BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28296044)

  • 1. Biolens behavior of RBCs under optically-induced mechanical stress.
    Merola F; Barroso Á; Miccio L; Memmolo P; Mugnano M; Ferraro P; Denz C
    Cytometry A; 2017 May; 91(5):527-533. PubMed ID: 28296044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical characterization of red blood cells using optical tweezers.
    Li C; Liu KK
    J Mater Sci Mater Med; 2008 Apr; 19(4):1529-35. PubMed ID: 18214643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP; Qie L; Dao M; Lim CT; Suresh S
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nonlinear mechanical response of the red blood cell.
    Yoon YZ; Kotar J; Yoon G; Cicuta P
    Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis.
    Chen YQ; Chen CW; Ni YL; Huang YS; Lin O; Chien S; Sung LA; Chiou A
    J Biophotonics; 2014 Aug; 7(8):647-55. PubMed ID: 23963649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic real time evaluation of red blood cell elasticity by optical tweezers.
    Moura DS; Silva DC; Williams AJ; Bezerra MA; Fontes A; de Araujo RE
    Rev Sci Instrum; 2015 May; 86(5):053702. PubMed ID: 26026527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers.
    Wu J; Li Y; Lu D; Liu Z; Cheng Z; He L
    Cryo Letters; 2009; 30(2):89-95. PubMed ID: 19448857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On monocytes and lymphocytes biolens clustering by in flow holographic microscopy.
    Běhal J; Pirone D; Sirico D; Bianco V; Mugnano M; Del Giudice D; Cavina B; Kurelac I; Memmolo P; Miccio L; Ferraro P
    Cytometry A; 2023 Mar; 103(3):251-259. PubMed ID: 36028475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired red cell deformability in iron deficient subjects.
    Brandão MM; Castro Mde L; Fontes A; Cesar CL; Costa FF; Saad ST
    Clin Hemorheol Microcirc; 2009; 43(3):217-21. PubMed ID: 19847056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers.
    Arias A; Etcheverry S; Solano P; Staforelli JP; Gallardo MJ; Rubinsztein-Dunlop H; Saavedra C
    Opt Express; 2013 Jan; 21(1):102-11. PubMed ID: 23388900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements.
    de Oliveira MA; Moura DS; Fontes A; de Araujo RE
    J Biomed Opt; 2016 Jul; 21(7):75012. PubMed ID: 27435896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional manipulation of red blood cells using optical tweezers.
    Xie Y; Liu X
    J Biophotonics; 2022 Feb; 15(2):e202100315. PubMed ID: 34773382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.
    Zhang Q; Li Z; Zhao S; Wen W; Chang L; Yu H; Jiang T
    Cytometry A; 2017 Feb; 91(2):126-132. PubMed ID: 27517614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.