These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28296353)

  • 1. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation.
    Walker DM; Leys JE; Dunham KE; Oliver JC; Schiller EE; Stephenson KS; Kimrey JT; Wooten J; Rogers MW
    Mol Ecol Resour; 2017 Nov; 17(6):1223-1230. PubMed ID: 28296353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing detection of eDNA from a stream-dwelling amphibian.
    Pilliod DS; Goldberg CS; Arkle RS; Waits LP
    Mol Ecol Resour; 2014 Jan; 14(1):109-16. PubMed ID: 24034561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of an environmental DNA assay to detect federally threatened groundwater salamanders in central Texas.
    Adcock ZC; Adcock ME; Forstner MRJ
    PLoS One; 2023; 18(7):e0288282. PubMed ID: 37428788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.
    Katano I; Harada K; Doi H; Souma R; Minamoto T
    PLoS One; 2017; 12(5):e0176541. PubMed ID: 28520733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving herpetological surveys in eastern North America using the environmental DNA method.
    Lacoursière-Roussel A; Dubois Y; Normandeau E; Bernatchez L
    Genome; 2016 Nov; 59(11):991-1007. PubMed ID: 27788021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient environmental DNA detection method for rare species: a case study of a small salamander (Hynobius boulengeri).
    Sakata MK; Takeshita D; Nishizawa R; Sato T; Minamoto T
    Anal Sci; 2023 May; 39(5):721-728. PubMed ID: 36859696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River.
    Cannon MV; Hester J; Shalkhauser A; Chan ER; Logue K; Small ST; Serre D
    Sci Rep; 2016 Mar; 6():22908. PubMed ID: 26965911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of timber harvests and silvicultural edges on terrestrial salamanders.
    MacNeil JE; Williams RN
    PLoS One; 2014; 9(12):e114683. PubMed ID: 25517409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.
    Ziemba JL; Hickerson CA; Anthony CD
    PLoS One; 2016; 11(5):e0151591. PubMed ID: 27144403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicologic and histopathologic response of the terrestrial salamander Plethodon cinereus to soil exposures of 1,3,5-trinitrohexahydro-1,3,5-triazine.
    Johnson MS; Paulus HI; Salice CJ; Checkai RT; Simini M
    Arch Environ Contam Toxicol; 2004 Nov; 47(4):496-501. PubMed ID: 15499500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests.
    Lopes CM; Sasso T; Valentini A; Dejean T; Martins M; Zamudio KR; Haddad CFB
    Mol Ecol Resour; 2017 Sep; 17(5):904-914. PubMed ID: 27987263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clearing muddied waters: Capture of environmental DNA from turbid waters.
    Williams KE; Huyvaert KP; Piaggio AJ
    PLoS One; 2017; 12(7):e0179282. PubMed ID: 28686659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes.
    Seeber PA; McEwen GK; Löber U; Förster DW; East ML; Melzheimer J; Greenwood AD
    Mol Ecol Resour; 2019 Nov; 19(6):1486-1496. PubMed ID: 31349392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental DNA enables detection of terrestrial mammals from forest pond water.
    Ushio M; Fukuda H; Inoue T; Makoto K; Kishida O; Sato K; Murata K; Nikaido M; Sado T; Sato Y; Takeshita M; Iwasaki W; Yamanaka H; Kondoh M; Miya M
    Mol Ecol Resour; 2017 Nov; 17(6):e63-e75. PubMed ID: 28603873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental DNA metabarcoding studies are critically affected by substrate selection.
    Koziol A; Stat M; Simpson T; Jarman S; DiBattista JD; Harvey ES; Marnane M; McDonald J; Bunce M
    Mol Ecol Resour; 2019 Mar; 19(2):366-376. PubMed ID: 30485662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions.
    Lacoursière-Roussel A; Rosabal M; Bernatchez L
    Mol Ecol Resour; 2016 Nov; 16(6):1401-1414. PubMed ID: 26946353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for inferring biological communities from environmental DNA.
    Shelton AO; O'Donnell JL; Samhouri JF; Lowell N; Williams GD; Kelly RP
    Ecol Appl; 2016 Sep; 26(6):1645-1659. PubMed ID: 27755698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles.
    Davy CM; Kidd AG; Wilson CC
    PLoS One; 2015; 10(7):e0130965. PubMed ID: 26200348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Environmental DNA (eDNA) to Detect Kirtland's Snake (
    Ratsch R; Kingsbury BA; Jordan MA
    Animals (Basel); 2020 Jun; 10(6):. PubMed ID: 32575432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are they arboreal? Climbing abilities and mechanics in the red-backed salamander (Plethodon cinereus).
    Hanna CS; Alihosseini C; Fischer HM; Davoli EC; Granatosky MC
    J Exp Zool A Ecol Integr Physiol; 2022 Mar; 337(3):238-249. PubMed ID: 34752693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.