These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28296490)

  • 1. Physiological Functioning of Carbonic Anhydrase in the Hydrothermal Vent Tubeworm Riftia Pachyptila.
    Goffredi SK; Girguis PR; Childress JJ; Desaulniers NT
    Biol Bull; 1999 Jun; 196(3):257-264. PubMed ID: 28296490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm.
    Goffredi S; Childress J; Desaulniers N; Lee R; Lallier F; Hammond D
    J Exp Biol; 1997; 200(Pt 5):883-96. PubMed ID: 9318669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of carbonic anhydrases from Riftia pachyptila, a symbiotic invertebrate from deep-sea hydrothermal vents.
    De Cian MC; Bailly X; Morales J; Strub JM; Van Dorsselaer A; Lallier FH
    Proteins; 2003 May; 51(3):327-39. PubMed ID: 12696045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification, sequencing, and localization of a new carbonic anhydrase transcript from the hydrothermal vent tubeworm Riftia pachyptila.
    Sanchez S; Andersen AC; Hourdez S; Lallier FH
    FEBS J; 2007 Oct; 274(20):5311-24. PubMed ID: 17892492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm
    Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM
    Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila.
    Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila.
    De Cian MC; Andersen AC; Bailly X; Lallier FH
    J Exp Biol; 2003 Jan; 206(Pt 2):399-409. PubMed ID: 12477910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS-, rather than H2S.
    Goffredi SK; Childress JJ; Desaulniers NT; Lallier FJ
    J Exp Biol; 1997 Oct; 200(Pt 20):2609-16. PubMed ID: 9359367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization.
    Sanchez S; Hourdez S; Lallier FH
    BMC Genomics; 2007 Sep; 8():337. PubMed ID: 17892591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.
    Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R
    J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature.
    Girguis PR; Childress JJ
    J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfide-Driven Autotrophic Balance in the Bacterial Symbiont-Containing Hydrothermal Vent Tubeworm, Riftia pachyptila Jones.
    Childress JJ; Fisher CR; Favuzzi JA; Kochevar RE; Sanders NK; Alayse AM
    Biol Bull; 1991 Feb; 180(1):135-153. PubMed ID: 29303639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ionic composition of the hydrothermal vent tube worm Riftia pachyptila: evidence for the elimination of SO2-4SO and H+ and for a Cl-/HCO-3HCO shift.
    Goffredi SK; Childress JJ; Lallier FH; Desaulniers NT
    Physiol Biochem Zool; 1999; 72(3):296-306. PubMed ID: 10222324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A delta13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO(2) gradients at the host-symbiont interface.
    Scott KM
    Environ Microbiol; 2003 May; 5(5):424-32. PubMed ID: 12713468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-DNA Solution Hybridization Studies of the Bacterial Symbionts of Hydrothermal Vent Tube Worms (Riftia pachyptila and Tevnia jerichonana).
    Edwards DB; Nelson DC
    Appl Environ Microbiol; 1991 Apr; 57(4):1082-8. PubMed ID: 16348457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of nitrate acquired by the tubeworm Riftia pachyptila.
    Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F
    Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila.
    Felbeck H; Jarchow J
    Physiol Zool; 1998; 71(3):294-302. PubMed ID: 9634176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila.
    De Cian M; Regnault M; Lallier FH
    J Exp Biol; 2000 Oct; 203(Pt 19):2907-20. PubMed ID: 10976028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp.
    Phleger CF; Nelson MM; Groce AK; Cary SC; Coyne KJ; Nichols PD
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun; 141(2):196-210. PubMed ID: 15893489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield inChlamydomonas reinhardtii.
    Patel BN; Merrett MJ
    Planta; 1986 Mar; 169(1):81-6. PubMed ID: 24232432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.