BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28296895)

  • 21. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.
    Drake DC; Naiman RJ
    Ecol Appl; 2007 Jul; 17(5):1523-42. PubMed ID: 17708226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel species interactions: American black bears respond to Pacific herring spawn.
    Fox CH; Paquet PC; Reimchen TE
    BMC Ecol; 2015 May; 15():14. PubMed ID: 26013706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced relative fitness in hatchery-origin Pink Salmon in two streams in Prince William Sound, Alaska.
    Shedd KR; Lescak EA; Habicht C; Knudsen EE; Dann TH; Hoyt HA; Prince DJ; Templin WD
    Evol Appl; 2022 Mar; 15(3):429-446. PubMed ID: 35386398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How relative size and abundance structures the relationship between size and individual growth in an ontogenetically piscivorous fish.
    Chamberlin JW; Beckman BR; Greene CM; Rice CA; Hall JE
    Ecol Evol; 2017 Sep; 7(17):6981-6995. PubMed ID: 28904777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska.
    Fukuyama AK; Shigenaka G; Coats DA
    Mar Pollut Bull; 2014 Jul; 84(1-2):56-69. PubMed ID: 24923812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.
    Litzow MA; Mueter FJ; Hobday AJ
    Glob Chang Biol; 2014 Jan; 20(1):38-50. PubMed ID: 23996901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem.
    Harwell MA; Gentile JH; Cummins KW; Highsmith RC; Hilborn R; McRoy CP; Parrish J; Weingartner T
    Hum Ecol Risk Assess; 2010 Jul; 16(4):672-726. PubMed ID: 20862192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of winter groundfish feeding guilds in Pacific herring Clupea pallasii and walleye pollock Gadus chalcogrammus nursery fjords.
    Gray BP; Bishop MA; Powers S
    J Fish Biol; 2019 Aug; 95(2):527-539. PubMed ID: 30989661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Assessment of Current Risks to Harlequin Ducks in Prince William Sound, Alaska, from the
    Harwell MA; Gentile JH; Parker KR; Murphy SM; Day RH; Bence AE; Neff JM; Wiens JA
    Hum Ecol Risk Assess; 2012 Mar; 18(2):261-328. PubMed ID: 23723680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the genetic toxicological impacts of the Exxon Valdez oil spill on pink salmon (Oncorhynchus gorbuscha) may be confounded by the influence of hatchery fish.
    Cronin MA; Maki AW
    Ecotoxicology; 2004 Aug; 13(6):495-501. PubMed ID: 15526855
    [No Abstract]   [Full Text] [Related]  

  • 31. Long time horizon for adaptive management to reveal predation effects in a salmon fishery.
    Walsworth TE; Schindler DE
    Ecol Appl; 2016 Dec; 26(8):2693-2705. PubMed ID: 27875003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adult spawners: A critical period for subarctic Chinook salmon in a changing climate.
    Howard KG; von Biela V
    Glob Chang Biol; 2023 Apr; 29(7):1759-1773. PubMed ID: 36661402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure of sea otters and harlequin ducks in Prince William Sound, Alaska, USA, to shoreline oil residues 20 years after the Exxon Valdez oil spill.
    Neff JM; Page DS; Boehm PD
    Environ Toxicol Chem; 2011 Mar; 30(3):659-72. PubMed ID: 21298711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-stationary climate-salmon relationships in the Gulf of Alaska.
    Litzow MA; Ciannelli L; Puerta P; Wettstein JJ; Rykaczewski RR; Opiekun M
    Proc Biol Sci; 2018 Nov; 285(1890):. PubMed ID: 30404879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomarkers in fish from Prince William Sound and the Gulf of Alaska: 1999-2000.
    Huggett RJ; Stegeman JJ; Page DS; Parker KR; Woodin B; Brown JS
    Environ Sci Technol; 2003 Sep; 37(18):4043-51. PubMed ID: 14524434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epizootiology of viral hemorrhagic septicemia virus in Pacific herring from the spawn-on-kelp fishery in Prince William Sound, Alaska, USA.
    Hershberger PK; Kocan RM; Elder NE; Meyers TR; Winton JR
    Dis Aquat Organ; 1999 Jun; 37(1):23-31. PubMed ID: 10439900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Criteria for oil spill recovery: a case study of the intertidal community of Prince William Sound, Alaska, following the Exxon Valdez oil spill.
    Skalski JR; Coats DA; Fukuyama AK
    Environ Manage; 2001 Jul; 28(1):9-18. PubMed ID: 11437004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive modeling of subsurface shoreline oil encounter probability from the Exxon Valdez oil spill in Prince William Sound, Alaska.
    Nixon Z; Michel J
    Environ Sci Technol; 2015 Apr; 49(7):4354-61. PubMed ID: 25719970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill.
    Marty GD; Hoffmann A; Okihiro MS; Hepler K; Hanes D
    Mar Environ Res; 2003 Dec; 56(5):569-84. PubMed ID: 12927739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behavioural responses of wild Pacific salmon and herring to boat noise.
    van der Knaap I; Ashe E; Hannay D; Bergman AG; Nielsen KA; Lo CF; Williams R
    Mar Pollut Bull; 2022 Jan; 174():113257. PubMed ID: 34933218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.