These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28297161)

  • 1. Photoreversibility and Biocompatibility of Polydimethylsiloxane-Coumarin as Adjustable Intraocular Lens Material.
    Jellali R; Bertrand V; Alexandre M; Rosière N; Grauwels M; De Pauw-Gillet MC; Jérôme C
    Macromol Biosci; 2017 Jul; 17(7):. PubMed ID: 28297161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-adjustable lens.
    Schwartz DM
    Trans Am Ophthalmol Soc; 2003; 101():417-36. PubMed ID: 14971588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fabrication and Performance Study of Polydimethylsiloxane Intraocular Lens].
    Du Q; Yu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):896-902. PubMed ID: 29714942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface.
    Huang XD; Yao K; Zhang Z; Zhang Y; Wang Y
    J Cataract Refract Surg; 2010 Feb; 36(2):290-8. PubMed ID: 20152613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers for in vivo tuning of refractive properties in intraocular lenses.
    Träger J; Heinzer J; Kim HC; Hampp N
    Macromol Biosci; 2008 Feb; 8(2):177-83. PubMed ID: 17952873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Coumarin-Containing Cyclic Polymer and Its Photoinduced Coupling/Dissociation.
    Li M; Fan W; Hong C; Pan C
    Macromol Rapid Commun; 2015 Dec; 36(24):2192-7. PubMed ID: 26497488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of intraocular lens materials.
    Werner L
    Curr Opin Ophthalmol; 2008 Jan; 19(1):41-9. PubMed ID: 18090897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of material on biocompatibility of intraocular lenses].
    Słowiński K; Misiuk-Hojło M; Szaliński M
    Polim Med; 2007; 37(1):35-45. PubMed ID: 17703722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The growth behavior of mouse fibroblasts on intraocular lens surface of various silicone and PMMA materials].
    Kammann J; Kreiner CF; Kaden P
    Ophthalmologe; 1994 Aug; 91(4):521-5. PubMed ID: 7950127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material properties of various intraocular lenses in an experimental study.
    Tehrani M; Dick HB; Wolters B; Pakula T; Wolf E
    Ophthalmologica; 2004; 218(1):57-63. PubMed ID: 14688437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic modification of intraocular lens via surface initiated reversible addition-fragmentation chain transfer polymerization for reduced posterior capsular opacification.
    Lin Q; Tang J; Han Y; Xu X; Hao X; Chen H
    Colloids Surf B Biointerfaces; 2017 Mar; 151():271-279. PubMed ID: 28027493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior.
    Okajima Y; Saika S; Sawa M
    J Cataract Refract Surg; 2006 Apr; 32(4):666-71. PubMed ID: 16698492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustable intraocular lens power technology.
    Ford J; Werner L; Mamalis N
    J Cataract Refract Surg; 2014 Jul; 40(7):1205-23. PubMed ID: 24957439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the biocompatibility of intraocular lenses.
    Majima K
    Ophthalmic Surg Lasers; 1996 Nov; 27(11):946-51. PubMed ID: 8938804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility.
    Werner L; Mamalis N; Romaniv N; Haymore J; Haugen B; Hunter B; Stevens S
    J Cataract Refract Surg; 2006 Jul; 32(7):1214-21. PubMed ID: 16857512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of surface modification of intraocular lenses on foreign body reaction ].
    Okajima Y; Saika S; Sawa M
    Nippon Ganka Gakkai Zasshi; 2005 May; 109(5):267-73. PubMed ID: 15948416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications.
    Iacob M; Bele A; Patras X; Pasca S; Butnaru M; Alexandru M; Ovezea D; Cazacu M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():392-402. PubMed ID: 25175228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of Shape Memory (Meth)Acrylate Co-Polymers and their Cytocompatibility In Vitro.
    Song L; Hu W; Wang G; Zhang H; Niu G; Cao H; Yang H; Zhu S
    J Biomater Sci Polym Ed; 2011; 22(1-3):1-17. PubMed ID: 20557691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uveal and capsular biocompatibility after implantation of sharp-edged hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with pseudoexfoliation syndrome.
    Richter-Mueksch S; Kahraman G; Amon M; Schild-Burggasser G; Schauersberger J; Abela-Formanek C
    J Cataract Refract Surg; 2007 Aug; 33(8):1414-8. PubMed ID: 17662434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of anti-TGF-β2 antibody functionalized intraocular lens on lens epithelial cell migration and epithelial-mesenchymal transition.
    Sun CB; Teng WQ; Cui JT; Huang XJ; Yao K
    Colloids Surf B Biointerfaces; 2014 Jan; 113():33-42. PubMed ID: 24060928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.