BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28297655)

  • 1. Formation of Large Hypericin Aggregates in Giant Unilamellar Vesicles-Experiments and Modeling.
    Joniova J; Rebič M; Strejčková A; Huntosova V; Staničová J; Jancura D; Miskovsky P; Bánó G
    Biophys J; 2017 Mar; 112(5):966-975. PubMed ID: 28297655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the diffusion of hypericin in dimethylsulfoxide/water mixtures-the effect of aggregation.
    Bánó G; Staničová J; Jancura D; Marek J; Bánó M; Uličný J; Strejčková A; Miškovský P
    J Phys Chem B; 2011 Mar; 115(10):2417-23. PubMed ID: 21332112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain.
    Inaoka Y; Yamazaki M
    Langmuir; 2007 Jan; 23(2):720-8. PubMed ID: 17209626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles.
    Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M
    Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-mediated preferential localization of hypericin in lipid membranes.
    Ho YF; Wu MH; Cheng BH; Chen YW; Shih MC
    Biochim Biophys Acta; 2009 Jun; 1788(6):1287-95. PubMed ID: 19366588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial orientation and electric-field-driven transport of hypericin inside of bilayer lipid membranes.
    Strejčková A; Staničová J; Jancura D; Miškovský P; Bánó G
    J Phys Chem B; 2013 Feb; 117(5):1280-6. PubMed ID: 23286583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion.
    Kahya N; Pécheur EI; de Boeij WP; Wiersma DA; Hoekstra D
    Biophys J; 2001 Sep; 81(3):1464-74. PubMed ID: 11509360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of hypericin association with low-density lipoproteins.
    Buriankova L; Buzova D; Chorvat D; Sureau F; Brault D; Miskovský P; Jancura D
    Photochem Photobiol; 2011; 87(1):56-63. PubMed ID: 21114669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity.
    Kolesinska B; Eyer K; Robinson T; Dittrich PS; Beck AK; Seebach D; Walde P
    Chem Biodivers; 2015 May; 12(5):697-732. PubMed ID: 26010661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems.
    Peruzzi J; Gutierrez MG; Mansfield K; Malmstadt N
    Langmuir; 2016 Dec; 32(48):12702-12709. PubMed ID: 27934517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave measurement of giant unilamellar vesicles in aqueous solution.
    Cui Y; Delaney WF; Darroudi T; Wang P
    Sci Rep; 2018 Jan; 8(1):497. PubMed ID: 29323157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation.
    Karal MAS; Islam MK; Mahbub ZB
    Eur Biophys J; 2020 Jan; 49(1):59-69. PubMed ID: 31796980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between line tension and curvature stabilizes modulated phase patterns on the surface of giant unilamellar vesicles: a simulation study.
    Amazon JJ; Goh SL; Feigenson GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022708. PubMed ID: 23496549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.