These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 28297655)
1. Formation of Large Hypericin Aggregates in Giant Unilamellar Vesicles-Experiments and Modeling. Joniova J; Rebič M; Strejčková A; Huntosova V; Staničová J; Jancura D; Miskovsky P; Bánó G Biophys J; 2017 Mar; 112(5):966-975. PubMed ID: 28297655 [TBL] [Abstract][Full Text] [Related]
2. On the diffusion of hypericin in dimethylsulfoxide/water mixtures-the effect of aggregation. Bánó G; Staničová J; Jancura D; Marek J; Bánó M; Uličný J; Strejčková A; Miškovský P J Phys Chem B; 2011 Mar; 115(10):2417-23. PubMed ID: 21332112 [TBL] [Abstract][Full Text] [Related]
3. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain. Inaoka Y; Yamazaki M Langmuir; 2007 Jan; 23(2):720-8. PubMed ID: 17209626 [TBL] [Abstract][Full Text] [Related]
4. Effects of electroformation protocol parameters on quality of homogeneous GUV populations. Drabik D; Doskocz J; Przybyło M Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045 [TBL] [Abstract][Full Text] [Related]
5. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Islam MZ; Ariyama H; Alam JM; Yamazaki M Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335 [TBL] [Abstract][Full Text] [Related]
6. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855 [TBL] [Abstract][Full Text] [Related]
7. Lipid-mediated preferential localization of hypericin in lipid membranes. Ho YF; Wu MH; Cheng BH; Chen YW; Shih MC Biochim Biophys Acta; 2009 Jun; 1788(6):1287-95. PubMed ID: 19366588 [TBL] [Abstract][Full Text] [Related]
8. Spatial orientation and electric-field-driven transport of hypericin inside of bilayer lipid membranes. Strejčková A; Staničová J; Jancura D; Miškovský P; Bánó G J Phys Chem B; 2013 Feb; 117(5):1280-6. PubMed ID: 23286583 [TBL] [Abstract][Full Text] [Related]
9. A membrane filtering method for the purification of giant unilamellar vesicles. Tamba Y; Terashima H; Yamazaki M Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642 [TBL] [Abstract][Full Text] [Related]
10. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes. Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394 [TBL] [Abstract][Full Text] [Related]
11. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Kahya N; Pécheur EI; de Boeij WP; Wiersma DA; Hoekstra D Biophys J; 2001 Sep; 81(3):1464-74. PubMed ID: 11509360 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of hypericin association with low-density lipoproteins. Buriankova L; Buzova D; Chorvat D; Sureau F; Brault D; Miskovský P; Jancura D Photochem Photobiol; 2011; 87(1):56-63. PubMed ID: 21114669 [TBL] [Abstract][Full Text] [Related]
13. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles. Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912 [TBL] [Abstract][Full Text] [Related]
14. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity. Kolesinska B; Eyer K; Robinson T; Dittrich PS; Beck AK; Seebach D; Walde P Chem Biodivers; 2015 May; 12(5):697-732. PubMed ID: 26010661 [TBL] [Abstract][Full Text] [Related]
16. Microwave measurement of giant unilamellar vesicles in aqueous solution. Cui Y; Delaney WF; Darroudi T; Wang P Sci Rep; 2018 Jan; 8(1):497. PubMed ID: 29323157 [TBL] [Abstract][Full Text] [Related]
17. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826 [TBL] [Abstract][Full Text] [Related]
18. Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. Karal MAS; Islam MK; Mahbub ZB Eur Biophys J; 2020 Jan; 49(1):59-69. PubMed ID: 31796980 [TBL] [Abstract][Full Text] [Related]
19. Electroformation of giant unilamellar vesicles in saline solution. Li Q; Wang X; Ma S; Zhang Y; Han X Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225 [TBL] [Abstract][Full Text] [Related]
20. Competition between line tension and curvature stabilizes modulated phase patterns on the surface of giant unilamellar vesicles: a simulation study. Amazon JJ; Goh SL; Feigenson GW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022708. PubMed ID: 23496549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]