BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 28297679)

  • 21. Predicting IDH mutation status of intrahepatic cholangiocarcinomas based on contrast-enhanced CT features.
    Zhu Y; Chen J; Kong W; Mao L; Kong W; Zhou Q; Zhou Z; Zhu B; Wang Z; He J; Qiu Y
    Eur Radiol; 2018 Jan; 28(1):159-169. PubMed ID: 28752218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative analysis reveals early and distinct genetic and epigenetic changes in intraductal papillary and tubulopapillary cholangiocarcinogenesis.
    Goeppert B; Stichel D; Toth R; Fritzsche S; Loeffler MA; Schlitter AM; Neumann O; Assenov Y; Vogel MN; Mehrabi A; Hoffmann K; Köhler B; Springfeld C; Weichenhan D; Plass C; Esposito I; Schirmacher P; von Deimling A; Roessler S
    Gut; 2022 Feb; 71(2):391-401. PubMed ID: 33468537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ten-Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wild-Type Isocitrate Dehydrogenase 1.
    Bai X; Zhang H; Zhou Y; Nagaoka K; Meng J; Ji C; Liu D; Dong X; Cao K; Mulla J; Cheng Z; Mueller W; Bay A; Hildebrand G; Lu S; Wallace J; Wands JR; Sun B; Huang CK
    Hepatology; 2021 May; 73(5):1747-1763. PubMed ID: 32740973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated hypermethylation at selective genes and their clinicopathological features.
    Lee K; Song YS; Shin Y; Wen X; Kim Y; Cho NY; Bae JM; Kang GH
    Sci Rep; 2020 Sep; 10(1):15820. PubMed ID: 32978444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets.
    Chong DQ; Zhu AX
    Oncotarget; 2016 Jul; 7(29):46750-46767. PubMed ID: 27102149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation inactivation of Nijmegen breakage syndrome gene (NBS1) in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
    Wang Y; Hong Y; Li M; Long J; Zhao YP; Zhang JX; Li Q; You H; Tong WM; Jia JD; Huang J
    PLoS One; 2013; 8(12):e82426. PubMed ID: 24349281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma.
    Yang SZ; Wang AQ; Du J; Wang JT; Yu WW; Liu Q; Wu YF; Chen SG
    World J Gastroenterol; 2016 Jul; 22(25):5814-21. PubMed ID: 27433094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between promoter methylation of p14(ARF), TMS1/ASC, and DAPK, and p53 mutation with prognosis in cholangiocarcinoma.
    Xiaofang L; Kun T; Shaoping Y; Zaiqiu W; Hailong S
    World J Surg Oncol; 2012 Jan; 10():5. PubMed ID: 22230750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IDH inhibitors in advanced cholangiocarcinoma: Another arrow in the quiver?
    Rizzo A; Ricci AD; Brandi G
    Cancer Treat Res Commun; 2021; 27():100356. PubMed ID: 33799004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic Profiling of Combined Hepatocellular Cholangiocarcinoma Reveals Genomics Similar to Either Hepatocellular Carcinoma or Cholangiocarcinoma.
    Murugesan K; Sharaf R; Montesion M; Moore JA; Pao J; Pavlick DC; Frampton GM; Upadhyay VA; Alexander BM; Miller VA; Javle MM; Bekaii Saab TS; Albacker LA; Ross JS; Ali SM
    JCO Precis Oncol; 2021 Aug; 5():. PubMed ID: 34476330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.
    Montal R; Sia D; Montironi C; Leow WQ; Esteban-Fabró R; Pinyol R; Torres-Martin M; Bassaganyas L; Moeini A; Peix J; Cabellos L; Maeda M; Villacorta-Martin C; Tabrizian P; Rodriguez-Carunchio L; Castellano G; Sempoux C; Minguez B; Pawlik TM; Labgaa I; Roberts LR; Sole M; Fiel MI; Thung S; Fuster J; Roayaie S; Villanueva A; Schwartz M; Llovet JM
    J Hepatol; 2020 Aug; 73(2):315-327. PubMed ID: 32173382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice.
    Ding N; Che L; Li XL; Liu Y; Jiang LJ; Fan B; Tao JY; Chen X; Ji JF
    World J Gastroenterol; 2016 Feb; 22(6):2071-80. PubMed ID: 26877611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring of Dynamic Changes and Clonal Evolution in Circulating Tumor DNA From Patients With
    Lapin M; Huang HJ; Chagani S; Javle M; Shroff RT; Pant S; Gouda MA; Raina A; Madwani K; Holley VR; Call SG; Dustin DJ; Lanman RB; Meric-Bernstam F; Raymond VM; Kwong LN; Janku F
    JCO Precis Oncol; 2022 Feb; 6():e2100197. PubMed ID: 35171660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic and transcriptional alterations of cholangiocarcinoma.
    Ito T; Sakurai-Yageta M; Goto A; Pairojkul C; Yongvanit P; Murakami Y
    J Hepatobiliary Pancreat Sci; 2014 Jun; 21(6):380-7. PubMed ID: 24532422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.
    Gao Q; Zhao YJ; Wang XY; Guo WJ; Gao S; Wei L; Shi JY; Shi GM; Wang ZC; Zhang YN; Shi YH; Ding J; Ding ZB; Ke AW; Dai Z; Wu FZ; Wang H; Qiu ZP; Chen ZA; Zhang ZF; Qiu SJ; Zhou J; He XH; Fan J
    Gastroenterology; 2014 May; 146(5):1397-407. PubMed ID: 24503127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers.
    Chan-On W; Nairismägi ML; Ong CK; Lim WK; Dima S; Pairojkul C; Lim KH; McPherson JR; Cutcutache I; Heng HL; Ooi L; Chung A; Chow P; Cheow PC; Lee SY; Choo SP; Tan IB; Duda D; Nastase A; Myint SS; Wong BH; Gan A; Rajasegaran V; Ng CC; Nagarajan S; Jusakul A; Zhang S; Vohra P; Yu W; Huang D; Sithithaworn P; Yongvanit P; Wongkham S; Khuntikeo N; Bhudhisawasdi V; Popescu I; Rozen SG; Tan P; Teh BT
    Nat Genet; 2013 Dec; 45(12):1474-8. PubMed ID: 24185513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity.
    Fujimoto A; Furuta M; Shiraishi Y; Gotoh K; Kawakami Y; Arihiro K; Nakamura T; Ueno M; Ariizumi S; Nguyen HH; Shigemizu D; Abe T; Boroevich KA; Nakano K; Sasaki A; Kitada R; Maejima K; Yamamoto Y; Tanaka H; Shibuya T; Shibata T; Ojima H; Shimada K; Hayami S; Shigekawa Y; Aikata H; Ohdan H; Marubashi S; Yamada T; Kubo M; Hirano S; Ishikawa O; Yamamoto M; Yamaue H; Chayama K; Miyano S; Tsunoda T; Nakagawa H
    Nat Commun; 2015 Jan; 6():6120. PubMed ID: 25636086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.
    Kipp BR; Voss JS; Kerr SE; Barr Fritcher EG; Graham RP; Zhang L; Highsmith WE; Zhang J; Roberts LR; Gores GJ; Halling KC
    Hum Pathol; 2012 Oct; 43(10):1552-8. PubMed ID: 22503487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma.
    Yoshino J; Akiyama Y; Shimada S; Ogura T; Ogawa K; Ono H; Mitsunori Y; Ban D; Kudo A; Yamaoka S; Tanabe M; Tanaka S
    Carcinogenesis; 2020 Jul; 41(6):734-742. PubMed ID: 31665232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity.
    Liu ZH; Lian BF; Dong QZ; Sun H; Wei JW; Sheng YY; Li W; Li YX; Xie L; Liu L; Qin LX
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2360-2368. PubMed ID: 29408647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.