These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 28297891)
1. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2017 Feb; 95(2-1):022208. PubMed ID: 28297891 [TBL] [Abstract][Full Text] [Related]
2. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2016 Jul; 94(1-1):012311. PubMed ID: 27575152 [TBL] [Abstract][Full Text] [Related]
3. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660 [TBL] [Abstract][Full Text] [Related]
4. Spatial coexistence of synchronized oscillation and death: A chimeralike state. Dutta PS; Banerjee T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042919. PubMed ID: 26565316 [TBL] [Abstract][Full Text] [Related]
5. Different kinds of chimera death states in nonlocally coupled oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2016 May; 93(5):052213. PubMed ID: 27300886 [TBL] [Abstract][Full Text] [Related]
6. Chimera states in two-dimensional networks of locally coupled oscillators. Kundu S; Majhi S; Bera BK; Ghosh D; Lakshmanan M Phys Rev E; 2018 Feb; 97(2-1):022201. PubMed ID: 29548198 [TBL] [Abstract][Full Text] [Related]
7. Chimera states: the existence criteria revisited. Sethia GC; Sen A Phys Rev Lett; 2014 Apr; 112(14):144101. PubMed ID: 24765967 [TBL] [Abstract][Full Text] [Related]
8. Basin stability for chimera states. Rakshit S; Bera BK; Perc M; Ghosh D Sci Rep; 2017 May; 7(1):2412. PubMed ID: 28546537 [TBL] [Abstract][Full Text] [Related]
9. Enhancing coherence via tuning coupling range in nonlocally coupled Stuart-Landau oscillators. Zhao N; Sun Z; Xu W Sci Rep; 2018 Jun; 8(1):8721. PubMed ID: 29880922 [TBL] [Abstract][Full Text] [Related]
10. Multistable chimera states in a smallest population of three coupled oscillators. Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793 [TBL] [Abstract][Full Text] [Related]
11. Chimeralike states in a minimal network of active camphor ribbons. Sharma J; Tiwari I; Das D; Parmananda P Phys Rev E; 2021 Jan; 103(1-1):012214. PubMed ID: 33601538 [TBL] [Abstract][Full Text] [Related]
12. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field. Ponomarenko VI; Kulminskiy DD; Prokhorov MD Phys Rev E; 2017 Aug; 96(2-1):022209. PubMed ID: 28950647 [TBL] [Abstract][Full Text] [Related]
13. Chimeralike states in a network of oscillators under attractive and repulsive global coupling. Mishra A; Hens C; Bose M; Roy PK; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062920. PubMed ID: 26764787 [TBL] [Abstract][Full Text] [Related]
14. Emerging chimera states under nonidentical counter-rotating oscillators. Sathiyadevi K; Chandrasekar VK; Lakshmanan M Phys Rev E; 2022 Mar; 105(3-1):034211. PubMed ID: 35428132 [TBL] [Abstract][Full Text] [Related]
15. Attracting Poisson chimeras in two-population networks. Lee S; Krischer K Chaos; 2021 Nov; 31(11):113101. PubMed ID: 34881613 [TBL] [Abstract][Full Text] [Related]
16. Chimeralike states in an ensemble of globally coupled oscillators. Yeldesbay A; Pikovsky A; Rosenblum M Phys Rev Lett; 2014 Apr; 112(14):144103. PubMed ID: 24765969 [TBL] [Abstract][Full Text] [Related]
17. Controlling chimera states in chaotic oscillator ensembles through linear augmentation. Khatun AA; Jafri HH; Punetha N Phys Rev E; 2021 Apr; 103(4-1):042202. PubMed ID: 34005985 [TBL] [Abstract][Full Text] [Related]
18. Impact of symmetry breaking in networks of globally coupled oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052915. PubMed ID: 26066237 [TBL] [Abstract][Full Text] [Related]
19. Cluster singularity: The unfolding of clustering behavior in globally coupled Stuart-Landau oscillators. Kemeth FP; Haugland SW; Krischer K Chaos; 2019 Feb; 29(2):023107. PubMed ID: 30823729 [TBL] [Abstract][Full Text] [Related]
20. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions. Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]