These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 28297927)
1. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation. Gonzalez-Ayala J; Calvo Hernández A; Roco JM Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927 [TBL] [Abstract][Full Text] [Related]
2. Optimization and Stability of Heat Engines: The Role of Entropy Evolution. Gonzalez-Ayala J; Santillán M; Santos MJ; Calvo Hernández A; Mateos Roco JM Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266589 [TBL] [Abstract][Full Text] [Related]
3. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
5. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines. Haseli Y Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284 [TBL] [Abstract][Full Text] [Related]
6. Low-dissipation heat devices: unified trade-off optimization and bounds. de Tomas C; Roco JM; Hernández AC; Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012105. PubMed ID: 23410281 [TBL] [Abstract][Full Text] [Related]
7. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Long R; Liu Z; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062119. PubMed ID: 25019737 [TBL] [Abstract][Full Text] [Related]
8. Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators. Gonzalez-Ayala J; Medina A; Roco JMM; Hernández AC Phys Rev E; 2018 Feb; 97(2-1):022139. PubMed ID: 29548120 [TBL] [Abstract][Full Text] [Related]
9. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency. Gerstenmaier YC Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798 [TBL] [Abstract][Full Text] [Related]
10. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Zhang R; Li QW; Tang FR; Yang XQ; Bai L Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616 [TBL] [Abstract][Full Text] [Related]
11. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
12. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
15. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. Shiraishi N; Saito K; Tasaki H Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428 [TBL] [Abstract][Full Text] [Related]
16. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime. Iyyappan I; Ponmurugan M Phys Rev E; 2018 Jan; 97(1-1):012141. PubMed ID: 29448419 [TBL] [Abstract][Full Text] [Related]
17. Work Fluctuation-Dissipation Trade-Off in Heat Engines. Funo K; Ueda M Phys Rev Lett; 2015 Dec; 115(26):260601. PubMed ID: 26764979 [TBL] [Abstract][Full Text] [Related]
18. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
19. Local-stability analysis of a low-dissipation heat engine working at maximum power output. Reyes-Ramírez I; Gonzalez-Ayala J; Calvo Hernández A; Santillán M Phys Rev E; 2017 Oct; 96(4-1):042128. PubMed ID: 29347531 [TBL] [Abstract][Full Text] [Related]
20. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]