These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28297957)

  • 1. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-phase flow in a chemically active porous medium.
    Darmon A; Benzaquen M; Salez T; Dauchot O
    J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
    Li H; Pan C; Miller CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of Darcys law for flow in porous media with variable porosity.
    Gray WG; Miller CT
    Environ Sci Technol; 2004 Nov; 38(22):5895-901. PubMed ID: 15573587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Averaged model for momentum and dispersion in hierarchical porous media.
    Chabanon M; David B; Goyeau B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023201. PubMed ID: 26382538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Langevin model for reactive transport in porous media.
    Tartakovsky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic wave propagation in double porosity media.
    Olny X; Boutin C
    J Acoust Soc Am; 2003 Jul; 114(1):73-89. PubMed ID: 12880022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Darcy behavior of two-phase channel flow.
    Xu X; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023010. PubMed ID: 25215823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
    Pau GS; Almgren AS; Bell JB; Lijewski MJ
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water-atmosphere system and the subsurface.
    Hibi Y
    J Contam Hydrol; 2020 Oct; 234():103688. PubMed ID: 32745797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive model of solute transport with reversible adsorption in spatially periodic hierarchical porous media.
    Yan X; Wang Q; Li N
    J Chromatogr A; 2015 Aug; 1407():69-75. PubMed ID: 26145453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.