These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 28297966)
1. Traffic model with an absorbing-state phase transition. Iannini ML; Dickman R Phys Rev E; 2017 Feb; 95(2-1):022106. PubMed ID: 28297966 [TBL] [Abstract][Full Text] [Related]
2. Finite-size effects in the Nagel-Schreckenberg traffic model. Balouchi A; Browne DA Phys Rev E; 2016 May; 93(5):052302. PubMed ID: 27300905 [TBL] [Abstract][Full Text] [Related]
3. Renormalization-group study of the Nagel-Schreckenberg model. Teoh HK; Yong EH Phys Rev E; 2018 Mar; 97(3-1):032314. PubMed ID: 29776154 [TBL] [Abstract][Full Text] [Related]
4. Analytic approach to the critical density in cellular automata for traffic flow. Gerwinski M; Krug J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):188-96. PubMed ID: 11969750 [TBL] [Abstract][Full Text] [Related]
5. Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model. Cheybani S; Kertész J; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016107. PubMed ID: 11304314 [TBL] [Abstract][Full Text] [Related]
6. Nondeterministic Nagel-Schreckenberg traffic model with open boundary conditions. Cheybani S; Kertész J; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016108. PubMed ID: 11304315 [TBL] [Abstract][Full Text] [Related]
7. Cellular automaton traffic flow model between the Fukui-Ishibashi and Nagel-Schreckenberg models. Wang L; Wang BH; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056117. PubMed ID: 11414971 [TBL] [Abstract][Full Text] [Related]
8. Traveling waves in an optimal velocity model of freeway traffic. Berg P; Woods A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036107. PubMed ID: 11308709 [TBL] [Abstract][Full Text] [Related]
9. Phase diagram of the Biham-Middleton-Levine traffic model in three dimensions. Chau HF; Wan KY Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5301-4. PubMed ID: 11970399 [TBL] [Abstract][Full Text] [Related]
10. Effects of quenched randomness induced by car accidents on traffic flow in a cellular automata model. Yang XQ; Ma YQ; Zhao YM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046121. PubMed ID: 15600474 [TBL] [Abstract][Full Text] [Related]
11. Mean-field theory for car accidents. Huang DW; Tseng WC Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):057106. PubMed ID: 11736147 [TBL] [Abstract][Full Text] [Related]
12. Velocity statistics of the Nagel-Schreckenberg model. Bain N; Emig T; Ulm FJ; Schreckenberg M Phys Rev E; 2016 Feb; 93(2):022305. PubMed ID: 26986350 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow. Bette HM; Habel L; Emig T; Schreckenberg M Phys Rev E; 2017 Jan; 95(1-1):012311. PubMed ID: 28208435 [TBL] [Abstract][Full Text] [Related]
14. Effect of damaged vehicle evacuation on traffic flow with open boundaries. Mhirech A; Ez-Zahraouy H; Ismaili AA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011132. PubMed ID: 20365348 [TBL] [Abstract][Full Text] [Related]
15. Cellular-automaton model with velocity adaptation in the framework of Kerner's three-phase traffic theory. Gao K; Jiang R; Hu SX; Wang BH; Wu QS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026105. PubMed ID: 17930102 [TBL] [Abstract][Full Text] [Related]
16. Car accidents in cellular automata models for one-lane traffic flow. Moussa N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036127. PubMed ID: 14524852 [TBL] [Abstract][Full Text] [Related]
17. Effects of a type of quenched randomness on car accidents in a cellular automaton model. Yang XQ; Zhang W; Qiu K; Zhao YM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016126. PubMed ID: 16486235 [TBL] [Abstract][Full Text] [Related]
18. Impact of headway distance and car speed on drivers' decisions to answer an incoming call. Pouyakian M; Mahabadi HA; Yazdi SM; Hajizadeh E; Nahvi A Traffic Inj Prev; 2013; 14(7):749-55. PubMed ID: 23944976 [TBL] [Abstract][Full Text] [Related]
19. Physics of automated driving in framework of three-phase traffic theory. Kerner BS Phys Rev E; 2018 Apr; 97(4-1):042303. PubMed ID: 29758629 [TBL] [Abstract][Full Text] [Related]
20. Zero-range model of traffic flow. Kaupuzs J; Mahnke R; Harris RJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056125. PubMed ID: 16383706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]