These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28297989)

  • 1. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.
    Fan M; Wang M; Zhang K; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E; 2017 Feb; 95(2-1):022611. PubMed ID: 28297989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses.
    Fan M; Zhang K; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E; 2017 Sep; 96(3-1):032602. PubMed ID: 29346996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using delaunay triangularization to characterize non-affine displacement fields during athermal, quasistatic deformation of amorphous solids.
    Jin W; Datye A; Schwarz UD; Shattuck MD; O'Hern CS
    Soft Matter; 2021 Oct; 17(38):8612-8623. PubMed ID: 34545381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universality of the plastic instability in strained amorphous solids.
    Dasgupta R; Karmakar S; Procaccia I
    Phys Rev Lett; 2012 Feb; 108(7):075701. PubMed ID: 22401226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain localization in glassy polymers under cylindrical confinement.
    Shavit A; Riggleman RA
    Phys Chem Chem Phys; 2014 Jun; 16(22):10301-9. PubMed ID: 24676009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastic response of a 2D Lennard-Jones amorphous solid: detailed analysis of the local rearrangements at very slow strain rate.
    Tanguy A; Leonforte F; Barrat JL
    Eur Phys J E Soft Matter; 2006 Jul; 20(3):355-64. PubMed ID: 16862398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity and dynamical heterogeneity in driven glassy materials.
    Tsamados M
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):165-81. PubMed ID: 20596880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraordinary plasticity of ductile bulk metallic glasses.
    Chen M; Inoue A; Zhang W; Sakurai T
    Phys Rev Lett; 2006 Jun; 96(24):245502. PubMed ID: 16907252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ductile crystalline-amorphous nanolaminates.
    Wang Y; Li J; Hamza AV; Barbee TW
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11155-60. PubMed ID: 17592136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses.
    Krisponeit JO; Pitikaris S; Avila KE; Küchemann S; Krüger A; Samwer K
    Nat Commun; 2014 Apr; 5():3616. PubMed ID: 24717842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangements in hard-sphere glasses under oscillatory shear strain.
    Petekidis G; Moussaïd A; Pusey PN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051402. PubMed ID: 12513487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic dynamics perspective on the relationship between Poisson's ratio and ductility of metallic glasses.
    Ngai KL; Wang LM; Liu R; Wang WH
    J Chem Phys; 2014 Jan; 140(4):044511. PubMed ID: 25669559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses.
    Jin Y; Urbani P; Zamponi F; Yoshino H
    Sci Adv; 2018 Dec; 4(12):eaat6387. PubMed ID: 30539140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Shear Transformation Events in Metallic Glasses.
    Xu B; Falk ML; Li JF; Kong LT
    Phys Rev Lett; 2018 Mar; 120(12):125503. PubMed ID: 29694058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear.
    Priezjev NV
    Phys Rev E; 2017 Feb; 95(2-1):023002. PubMed ID: 28297962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation of plastic rearrangements in two-dimensional model glasses under shear.
    Nicolas A; Rottler J
    Phys Rev E; 2018 Jun; 97(6-1):063002. PubMed ID: 30011591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universality of plastic instability and mechanical yield in metallic glasses.
    Kumar R S; Gupta BS
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34032220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes.
    Yang J; Duan J; Wang YJ; Jiang MQ
    Eur Phys J E Soft Matter; 2020 Sep; 43(9):56. PubMed ID: 32920738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust scaling of strength and elastic constants and universal cooperativity in disordered colloidal micropillars.
    Strickland DJ; Huang YR; Lee D; Gianola DS
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18167-72. PubMed ID: 25489098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic response of a two-dimensional amorphous solid to quasistatic shear: transverse particle diffusion and phenomenology of dissipative events.
    Lemaître A; Caroli C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036104. PubMed ID: 17930303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.