These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28298000)

  • 1. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036707. PubMed ID: 17500826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain.
    Feshchenko RM; Popov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053308. PubMed ID: 24329380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crank-Nicolson method for solving uncertain heat equation.
    Liu J; Hao Y
    Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical time-dependent solutions of the Schrödinger equation with piecewise continuous potentials.
    van Dijk W
    Phys Rev E; 2016 Jun; 93(6):063307. PubMed ID: 27415387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation.
    Wells D; Quiney H
    Sci Rep; 2019 Jan; 9(1):782. PubMed ID: 30692569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A split-step finite element method for the space-fractional Schrödinger equation in two dimensions.
    Zhu X; Wan H; Zhang Y
    Sci Rep; 2024 Oct; 14(1):24257. PubMed ID: 39415026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency and accuracy of numerical solutions to the time-dependent Schrödinger equation.
    van Dijk W; Brown J; Spyksma K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056703. PubMed ID: 22181543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization.
    Shao H; Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056705. PubMed ID: 19518591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient explicit numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W
    Phys Rev E; 2022 Feb; 105(2-2):025303. PubMed ID: 35291168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann schemes for the nonlinear Schrödinger equation.
    Zhong L; Feng S; Dong P; Gao S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of fractional-fractal Boussinesq equation.
    Yadav MP; Agarwal R
    Chaos; 2019 Jan; 29(1):013109. PubMed ID: 30709111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Convergence Analysis of the Frank-Kamenetskii Equation.
    Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization.
    Fetić B; Milošević DB
    Phys Rev E; 2017 May; 95(5-1):053309. PubMed ID: 28618485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of numerical approaches to the solution of the time-dependent Schrödinger equation in one dimension.
    Gharibnejad H; Schneider BI; Leadingham M; Schmale HJ
    Comput Phys Commun; 2020; 252():. PubMed ID: 33132403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model.
    Belhamadia Y; Rammal Z
    Comput Biol Med; 2021 Mar; 130():104187. PubMed ID: 33454534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.