These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28298081)

  • 1. Signal-3L 2.0: A Hierarchical Mixture Model for Enhancing Protein Signal Peptide Prediction by Incorporating Residue-Domain Cross-Level Features.
    Zhang YZ; Shen HB
    J Chem Inf Model; 2017 Apr; 57(4):988-999. PubMed ID: 28298081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-3L 3.0: Improving Signal Peptide Prediction through Combining Attention Deep Learning with Window-Based Scoring.
    Zhang WX; Pan X; Shen HB
    J Chem Inf Model; 2020 Jul; 60(7):3679-3686. PubMed ID: 32501689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Jun; 357(3):633-40. PubMed ID: 17434148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Signal Peptide Cleavage Sites with Subsite-Coupled and Template Matching Fusion Algorithm.
    Zhang SW; Zhang TH; Zhang JN; Huang Y
    Mol Inform; 2014 Mar; 33(3):230-9. PubMed ID: 27485691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neighboring sequence environment in predicting cleavage sites of signal peptides.
    Li Y; Wen Z; Zhou C; Tan F; Li M
    Peptides; 2008 Sep; 29(9):1498-504. PubMed ID: 18635288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach.
    Hon LS; Zhang Y; Kaminker JS; Zhang Z
    Hum Mutat; 2009 Jan; 30(1):99-106. PubMed ID: 18570327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal peptide prediction based on analysis of experimentally verified cleavage sites.
    Zhang Z; Henzel WJ
    Protein Sci; 2004 Oct; 13(10):2819-24. PubMed ID: 15340161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction.
    Yin X; Yang J; Xiao F; Yang Y; Shen HB
    Nanomicro Lett; 2018; 10(1):2. PubMed ID: 30393651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2014 Oct; 30(20):2973-4. PubMed ID: 24974200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined prediction of Tat and Sec signal peptides with hidden Markov models.
    Bagos PG; Nikolaou EP; Liakopoulos TD; Tsirigos KD
    Bioinformatics; 2010 Nov; 26(22):2811-7. PubMed ID: 20847219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis.
    Guo Y; Yang Y; Huang Y; Shen HB
    Anal Biochem; 2020 Feb; 591():113565. PubMed ID: 31883904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence.
    Fan YX; Pan X; Zhang Y; Shen HB
    Methods Mol Biol; 2019; 1915():111-120. PubMed ID: 30617800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flanking signal and mature peptide residues influence signal peptide cleavage.
    Choo KH; Ranganathan S
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S15. PubMed ID: 19091014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An HMM posterior decoder for sequence feature prediction that includes homology information.
    Käll L; Krogh A; Sonnhammer EL
    Bioinformatics; 2005 Jun; 21 Suppl 1():i251-7. PubMed ID: 15961464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.