BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28298144)

  • 21. Surface-Enhanced Raman Spectroscopy: A New Modality for Cancer Imaging.
    Andreou C; Kishore SA; Kircher MF
    J Nucl Med; 2015 Sep; 56(9):1295-9. PubMed ID: 26182971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer Diagnosis through SERS and Other Related Techniques.
    Blanco-Formoso M; Alvarez-Puebla RA
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32214017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy.
    Fales AM; Yuan H; Vo-Dinh T
    Mol Pharm; 2013 Jun; 10(6):2291-8. PubMed ID: 23659475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes.
    Wang HN; Crawford BM; Norton SJ; Vo-Dinh T
    J Phys Chem B; 2019 Dec; 123(48):10245-10251. PubMed ID: 31710234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells.
    Jiang L; Qian J; Cai F; He S
    Anal Bioanal Chem; 2011 Jul; 400(9):2793-800. PubMed ID: 21455653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition.
    Wang J; Wu X; Wang C; Shao N; Dong P; Xiao R; Wang S
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20919-29. PubMed ID: 26322791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.
    La Rocca R; Messina GC; Dipalo M; Shalabaeva V; De Angelis F
    Small; 2015 Sep; 11(36):4632-7. PubMed ID: 26114644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.
    Fan Z; Senapati D; Khan SA; Singh AK; Hamme A; Yust B; Sardar D; Ray PC
    Chemistry; 2013 Feb; 19(8):2839-47. PubMed ID: 23296491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-enhanced Raman scattering in cancer detection and imaging.
    Vendrell M; Maiti KK; Dhaliwal K; Chang YT
    Trends Biotechnol; 2013 Apr; 31(4):249-57. PubMed ID: 23416096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode.
    Hou X; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1140-5. PubMed ID: 17686652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics.
    Nima ZA; Biswas A; Bayer IS; Hardcastle FD; Perry D; Ghosh A; Dervishi E; Biris AS
    Drug Metab Rev; 2014 May; 46(2):155-75. PubMed ID: 24467460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating.
    Mattiucci N; D'Aguanno G; Everitt HO; Foreman JV; Callahan JM; Buncick MC; Bloemer MJ
    Opt Express; 2012 Jan; 20(2):1868-77. PubMed ID: 22274532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy.
    Zhan Y; Liu Y; Zu H; Guo Y; Wu S; Yang H; Liu Z; Lei B; Zhuang J; Zhang X; Huang D; Hu C
    Nanoscale; 2018 Mar; 10(13):5997-6004. PubMed ID: 29542776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes.
    Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H
    J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy.
    Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S
    Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of yeast species using surface-enhanced Raman scattering.
    Sayin I; Kahraman M; Sahin F; Yurdakul D; Culha M
    Appl Spectrosc; 2009 Nov; 63(11):1276-82. PubMed ID: 19891836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field.
    Cailletaud J; De Bleye C; Dumont E; Sacré PY; Netchacovitch L; Gut Y; Boiret M; Ginot YM; Hubert P; Ziemons E
    J Pharm Biomed Anal; 2018 Jan; 147():458-472. PubMed ID: 28688617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.