BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28298177)

  • 1. Tympanic membrane organ culture using cell culture well inserts engrafted with tympanic membrane tissue explants.
    Liew LJ; Day RM; Dilley RJ
    Biotechniques; 2017 Mar; 62(3):109-114. PubMed ID: 28298177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tympanic Membrane Derived Stem Cell-Like Cultures for Tissue Regeneration.
    Liew LJ; Chen LQ; Wang AY; von Unge M; Atlas MD; Dilley RJ
    Stem Cells Dev; 2018 May; 27(10):649-657. PubMed ID: 29571277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilising silk fibroin membranes as scaffolds for the growth of tympanic membrane keratinocytes, and application to myringoplasty surgery.
    Levin B; Redmond SL; Rajkhowa R; Eikelboom RH; Atlas MD; Marano RJ
    J Laryngol Otol; 2013 Jan; 127 Suppl 1():S13-20. PubMed ID: 22892109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary results of the application of a silk fibroin scaffold to otology.
    Levin B; Redmond SL; Rajkhowa R; Eikelboom RH; Marano RJ; Atlas MD
    Otolaryngol Head Neck Surg; 2010 Mar; 142(3 Suppl 1):S33-5. PubMed ID: 20176279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing towards a tissue-engineered tympanic membrane: silk fibroin as a substratum for growing human eardrum keratinocytes.
    Ghassemifar R; Redmond S; Zainuddin ; Chirila TV
    J Biomater Appl; 2010 Mar; 24(7):591-606. PubMed ID: 20308345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Epidermal Progenitor Cells from Rat Tympanic Membrane.
    Liew LJ; Wang AY; Dilley RJ
    Methods Mol Biol; 2019; 2029():247-255. PubMed ID: 31273747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved tympanic membrane regeneration after myringoplastic surgery using an artificial biograft.
    Immich APS; Pennacchi PC; Naves AF; Felisbino SL; Boemo RL; Maria-Engler SS; Catalani LH
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():48-58. PubMed ID: 28183636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafts in myringoplasty: utilizing a silk fibroin scaffold as a novel device.
    Levin B; Rajkhowa R; Redmond SL; Atlas MD
    Expert Rev Med Devices; 2009 Nov; 6(6):653-64. PubMed ID: 19911876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Epidermal stem cells in the tympanic membrane].
    Wang WQ; Wang ZM; Tian J
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2004 Dec; 39(12):712-6. PubMed ID: 15813011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor.
    Mei Teh B; Redmond SL; Shen Y; Atlas MD; Marano RJ; Dilley RJ
    Exp Cell Res; 2013 Apr; 319(6):790-9. PubMed ID: 23384599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Reconstruction of three different kinds of tympanic membrane in vitro by tissue engineering technique].
    Deng Z; Tian Y; Wang J; Qiu J; Liu Y; Zhao Y; Jin Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):88-91. PubMed ID: 18361247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of in vitro cultured adipose-derived stem cells of rats on the tympanic membrane fibroblasts].
    Lei F; Sun JJ; Liu Y; Jiang DQ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 Jul; 45(7):587-91. PubMed ID: 21055060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of cartilage tissue using scaffold-free organoid culture technique.
    Irie Y; Mizumoto H; Fujino S; Kajiwara T
    J Biosci Bioeng; 2008 May; 105(5):450-3. PubMed ID: 18558333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold.
    Tang X; Xue C; Wang Y; Ding F; Yang Y; Gu X
    Biomaterials; 2012 May; 33(15):3860-7. PubMed ID: 22364696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear.
    Shen Y; Redmond SL; Papadimitriou JM; Teh BM; Yan S; Wang Y; Atlas MD; Marano RJ; Zheng M; Dilley RJ
    Biomed Mater; 2014 Feb; 9(1):015015. PubMed ID: 24457429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterned organoid culture of rat hepatocytes and HepG2 cells.
    Mori R; Sakai Y; Nakazawa K
    J Biosci Bioeng; 2008 Sep; 106(3):237-42. PubMed ID: 18929998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.