BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 28298224)

  • 1. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
    Jensen ED; Ferreira R; Jakočiūnas T; Arsovska D; Zhang J; Ding L; Smith JD; David F; Nielsen J; Jensen MK; Keasling JD
    Microb Cell Fact; 2017 Mar; 16(1):46. PubMed ID: 28298224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart.
    Schoger E; Carroll KJ; Iyer LM; McAnally JR; Tan W; Liu N; Noack C; Shomroni O; Salinas G; Groß J; Herzog N; Doroudgar S; Bassel-Duby R; Zimmermann WH; Zelarayán LC
    Circ Res; 2020 Jan; 126(1):6-24. PubMed ID: 31730408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
    Gander MW; Vrana JD; Voje WE; Carothers JM; Klavins E
    Nat Commun; 2017 May; 8():15459. PubMed ID: 28541304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells.
    Hazelbaker DZ; Beccard A; Angelini G; Mazzucato P; Messana A; Lam D; Eggan K; Barrett LE
    Sci Rep; 2020 Jan; 10(1):635. PubMed ID: 31959800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast.
    McCarty NS; Shaw WM; Ellis T; Ledesma-Amaro R
    ACS Synth Biol; 2019 Apr; 8(4):906-910. PubMed ID: 30939239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
    DiCarlo JE; Norville JE; Mali P; Rios X; Aach J; Church GM
    Nucleic Acids Res; 2013 Apr; 41(7):4336-43. PubMed ID: 23460208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning.
    Schüller A; Wolansky L; Berger H; Studt L; Gacek-Matthews A; Sulyok M; Strauss J
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9801-9822. PubMed ID: 33006690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex and optimization of dCas9-TV-mediated gene activation in plants.
    Xiong X; Liang J; Li Z; Gong BQ; Li JF
    J Integr Plant Biol; 2021 Apr; 63(4):634-645. PubMed ID: 33058471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.