These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 2829896)
1. Reduction of iodonitrotetrazolium violet by superoxide radicals. Podczasy JJ; Wei R Biochem Biophys Res Commun; 1988 Feb; 150(3):1294-301. PubMed ID: 2829896 [TBL] [Abstract][Full Text] [Related]
2. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)-carbonyl--3, 4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Ukeda H; Maeda S; Ishii T; Sawamura M Anal Biochem; 1997 Sep; 251(2):206-9. PubMed ID: 9299017 [TBL] [Abstract][Full Text] [Related]
3. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples. Xu C; Liu S; Liu Z; Song F; Liu S Anal Chim Acta; 2013 Sep; 793():53-60. PubMed ID: 23953206 [TBL] [Abstract][Full Text] [Related]
4. The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase. Sutherland MW; Learmonth BA Free Radic Res; 1997 Sep; 27(3):283-9. PubMed ID: 9350432 [TBL] [Abstract][Full Text] [Related]
5. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500 [TBL] [Abstract][Full Text] [Related]
6. The effect of detergents on the reduction of tetrazolium salts. Liochev SI; Batinic-Haberle I; Fridovich I Arch Biochem Biophys; 1995 Dec; 324(1):48-52. PubMed ID: 7503558 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions. Radi RA; Rubbo H; Prodanov E Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790 [TBL] [Abstract][Full Text] [Related]
8. Is reduction of the sulfonated tetrazolium 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide a reliable measure of intracellular superoxide production? Benov L; Fridovich I Anal Biochem; 2002 Nov; 310(2):186-90. PubMed ID: 12423637 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of xanthine oxidase by pterins. Wede I; Altindag ZZ; Widner B; Wachter H; Fuchs D Free Radic Res; 1998 Oct; 29(4):331-8. PubMed ID: 9860048 [TBL] [Abstract][Full Text] [Related]
10. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine. Ross D; Cotgreave I; Moldéus P Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602 [TBL] [Abstract][Full Text] [Related]
11. Spectrophotometric Assay for Superoxide Dismutase Based on the Reduction of Highly Water-soluble Tetrazolium Salts by Xanthine-Xanthine Oxidase. Ukeda H; Kawana D; Maeda S; Sawamura M Biosci Biotechnol Biochem; 1999; 63(3):485-8. PubMed ID: 27393255 [TBL] [Abstract][Full Text] [Related]
12. Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. Tan AS; Berridge MV J Immunol Methods; 2000 Apr; 238(1-2):59-68. PubMed ID: 10758236 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Nishikimi M Biochem Biophys Res Commun; 1975 Mar; 63(2):463-8. PubMed ID: 235924 [No Abstract] [Full Text] [Related]
14. Formate oxidation as a measure of hydrogen peroxide production: effect of pH and involvement of superoxide anion. DeChatelet LR; Shirley PS J Immunol; 1981 Aug; 127(2):742-5. PubMed ID: 6265556 [No Abstract] [Full Text] [Related]
15. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics. Bijloo GJ; van der Goot H; Bast A; Timmerman H J Inorg Biochem; 1990 Nov; 40(3):237-44. PubMed ID: 1963439 [TBL] [Abstract][Full Text] [Related]
16. Singlet oxygen generation in the superoxide reaction. Mao Y; Zang L; Shi X Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen. Manthey MK; Pyne SG; Truscott RJ Biochim Biophys Acta; 1990 May; 1034(2):207-12. PubMed ID: 2162210 [TBL] [Abstract][Full Text] [Related]
18. Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones. Roy D; Kalyanaraman B; Liehr JG Biochem Pharmacol; 1991 Sep; 42(8):1627-31. PubMed ID: 1656992 [TBL] [Abstract][Full Text] [Related]
19. Effects of oxygen radicals on substrate oxidation by cardiac myocytes. McDonough KH; Henry JJ; Spitzer JJ Biochim Biophys Acta; 1987 Nov; 926(2):127-31. PubMed ID: 2822138 [TBL] [Abstract][Full Text] [Related]
20. Superoxide radical production by allopurinol and xanthine oxidase. Galbusera C; Orth P; Fedida D; Spector T Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]