These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28299173)

  • 1. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data.
    Nguyen L; Dang CC; Ballester PJ
    F1000Res; 2016; 5():. PubMed ID: 28299173
    [No Abstract]   [Full Text] [Related]  

  • 2. Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours.
    Naulaerts S; Dang CC; Ballester PJ
    Oncotarget; 2017 Nov; 8(57):97025-97040. PubMed ID: 29228590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms.
    Kusch N; Schuppert A
    PLoS One; 2020; 15(11):e0238961. PubMed ID: 33226984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting inconsistency in large pharmacogenomic studies.
    Safikhani Z; Smirnov P; Freeman M; El-Hachem N; She A; Rene Q; Goldenberg A; Birkbak NJ; Hatzis C; Shi L; Beck AH; Aerts HJWL; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():2333. PubMed ID: 28928933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics.
    Ding MQ; Chen L; Cooper GF; Young JD; Lu X
    Mol Cancer Res; 2018 Feb; 16(2):269-278. PubMed ID: 29133589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
    Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and validation of genomic predictors for anticancer drug sensitivity.
    Papillon-Cavanagh S; De Jay N; Hachem N; Olsen C; Bontempi G; Aerts HJ; Quackenbush J; Haibe-Kains B
    J Am Med Inform Assoc; 2013; 20(4):597-602. PubMed ID: 23355484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants.
    Pandi MT; Koromina M; Tsafaridis I; Patsilinakos S; Christoforou E; van der Spek PJ; Patrinos GP
    Hum Genomics; 2021 Aug; 15(1):51. PubMed ID: 34372920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles.
    Nguyen LC; Naulaerts S; Bruna A; Ghislat G; Ballester PJ
    Biomedicines; 2021 Sep; 9(10):. PubMed ID: 34680436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of pharmacogenomic agreement.
    Safikhani Z; El-Hachem N; Quevedo R; Smirnov P; Goldenberg A; Juul Birkbak N; Mason C; Hatzis C; Shi L; Aerts HJ; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():825. PubMed ID: 27408686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.