These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28299173)

  • 21. How Reliable Are Ligand-Centric Methods for Target Fishing?
    Peón A; Dang CC; Ballester PJ
    Front Chem; 2016; 4():15. PubMed ID: 27148522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers.
    Mohammed A; Biegert G; Adamec J; Helikar T
    Oncotarget; 2017 Oct; 8(49):85692-85715. PubMed ID: 29156751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles.
    Naulaerts S; Menden MP; Ballester PJ
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32604779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers.
    Wang HY; Hsieh CH; Wen CN; Wen YH; Chen CH; Lu JJ
    PLoS One; 2016; 11(6):e0158285. PubMed ID: 27355357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of transfer learning for cancer drug sensitivity prediction.
    Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ranking Breast Cancer Drugs and Biomarkers Identification Using Machine Learning and Pharmacogenomics.
    Mehmood A; Nawab S; Jin Y; Hassan H; Kaushik AC; Wei DQ
    ACS Pharmacol Transl Sci; 2023 Mar; 6(3):399-409. PubMed ID: 36926455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.
    Sandercock AM; Rust S; Guillard S; Sachsenmeier KF; Holoweckyj N; Hay C; Flynn M; Huang Q; Yan K; Herpers B; Price LS; Soden J; Freeth J; Jermutus L; Hollingsworth R; Minter R
    Mol Cancer; 2015 Jul; 14():147. PubMed ID: 26227951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic analysis of genomics-based modeling approaches for prediction of drug response to cytotoxic chemotherapies.
    Mannheimer JD; Duval DL; Prasad A; Gustafson DL
    BMC Med Genomics; 2019 Jun; 12(1):87. PubMed ID: 31208429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages.
    Tuarob S; Tucker CS; Salathe M; Ram N
    J Biomed Inform; 2014 Jun; 49():255-68. PubMed ID: 24642081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmarking of gastric cancer sensitivity to anti-cancer drugs ex vivo as a basis for drug selection in systemic and intraperitoneal therapy.
    Hultman B; Mahteme H; Sundbom M; Ljungman M; Larsson R; Nygren P
    J Exp Clin Cancer Res; 2014 Dec; 33(1):110. PubMed ID: 25528067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing machine learning models.
    Sharifi-Noghabi H; Jahangiri-Tazehkand S; Smirnov P; Hon C; Mammoliti A; Nair SK; Mer AS; Ester M; Haibe-Kains B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34382071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties.
    Menden MP; Iorio F; Garnett M; McDermott U; Benes CH; Ballester PJ; Saez-Rodriguez J
    PLoS One; 2013; 8(4):e61318. PubMed ID: 23646105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma distribution based predicting model for breast cancer drug response based on multi-layer feature selection.
    Cui T; Wang Z; Gu H; Qin P; Wang J
    Front Genet; 2023; 14():1095976. PubMed ID: 36816042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unearthing new genomic markers of drug response by improved measurement of discriminative power.
    Dang CC; Peón A; Ballester PJ
    BMC Med Genomics; 2018 Feb; 11(1):10. PubMed ID: 29409485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Response to Histone Deacetylase Inhibitors Using High-Throughput Genomics.
    Geeleher P; Loboda A; Lenkala D; Wang F; LaCroix B; Karovic S; Wang J; Nebozhyn M; Chisamore M; Hardwick J; Maitland ML; Huang RS
    J Natl Cancer Inst; 2015 Nov; 107(11):. PubMed ID: 26296641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.