These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28299173)

  • 41. Exploiting convergent phenotypes to derive a pan-cancer cisplatin response gene expression signature.
    Scarborough JA; Eschrich SA; Torres-Roca J; Dhawan A; Scott JG
    NPJ Precis Oncol; 2023 Apr; 7(1):38. PubMed ID: 37076665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving the prediction of chemotherapeutic sensitivity of tumors in breast cancer via optimizing the selection of candidate genes.
    Jiang L; Huang L; Kuang Q; Zhang J; Li M; Wen Z; He L
    Comput Biol Chem; 2014 Apr; 49():71-8. PubMed ID: 24440656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests.
    Fasola S; Cilluffo G; Montalbano L; Malizia V; Ferrante G; La Grutta S
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34207374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting Synergism of Cancer Drug Combinations Using NCI-ALMANAC Data.
    Sidorov P; Naulaerts S; Ariey-Bonnet J; Pasquier E; Ballester PJ
    Front Chem; 2019; 7():509. PubMed ID: 31380352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kernelized rank learning for personalized drug recommendation.
    He X; Folkman L; Borgwardt K
    Bioinformatics; 2018 Aug; 34(16):2808-2816. PubMed ID: 29528376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel approach for drug response prediction in cancer cell lines via network representation learning.
    Yang J; Li A; Li Y; Guo X; Wang M
    Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bimodal Gene Expression in Patients with Cancer Provides Interpretable Biomarkers for Drug Sensitivity.
    Ba-Alawi W; Nair SK; Li B; Mammoliti A; Smirnov P; Mer AS; Penn LZ; Haibe-Kains B
    Cancer Res; 2022 Jul; 82(13):2378-2387. PubMed ID: 35536872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene expression profiling of breast tumor cell lines to predict for therapeutic response to microtubule-stabilizing agents.
    Kadra G; Finetti P; Toiron Y; Viens P; Birnbaum D; Borg JP; Bertucci F; Gonçalves A
    Breast Cancer Res Treat; 2012 Apr; 132(3):1035-47. PubMed ID: 21792624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization.
    Emdadi A; Eslahchi C
    Front Genet; 2020; 11():75. PubMed ID: 32174963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear mixed-effects models for modeling in vitro drug response data to determine problematic cancer cell lines.
    Abbas-Aghababazadeh F; Lu P; Fridley BL
    Sci Rep; 2019 Oct; 9(1):14421. PubMed ID: 31594982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression Levels of Therapeutic Targets as Indicators of Sensitivity to Targeted Therapeutics.
    Roy R; Winteringham LN; Lassmann T; Forrest ARR
    Mol Cancer Ther; 2019 Dec; 18(12):2480-2489. PubMed ID: 31467181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine learning based anti-cancer drug response prediction and search for predictor genes using cancer cell line gene expression.
    Qiu K; Lee J; Kim H; Yoon S; Kang K
    Genomics Inform; 2021 Mar; 19(1):e10. PubMed ID: 33840174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benchmarking protein classification algorithms via supervised cross-validation.
    Kertész-Farkas A; Dhir S; Sonego P; Pacurar M; Netoteia S; Nijveen H; Kuzniar A; Leunissen JA; Kocsor A; Pongor S
    J Biochem Biophys Methods; 2008 Apr; 70(6):1215-23. PubMed ID: 17604112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs.
    Fiebig HH; Schüler J; Bausch N; Hofmann M; Metz T; Korrat A
    Cancer Genomics Proteomics; 2007; 4(3):197-209. PubMed ID: 17878523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors.
    Zou M; Zhang PJ; Wen XY; Chen L; Tian YP; Wang Y
    Methods; 2015 Jul; 83():3-17. PubMed ID: 25980368
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Prediction of Drug Responses in Cancer Cell Lines From Cancer Omics and Detection of Drug Effectiveness Related Methylation Sites.
    Yuan R; Chen S; Wang Y
    Front Genet; 2020; 11():917. PubMed ID: 32849855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.