These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28299400)

  • 1. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost.
    Ravi K; García-Hidalgo J; Gorwa-Grauslund MF; Lidén G
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5059-5070. PubMed ID: 28299400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics.
    Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E
    Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
    Simon O; Klaiber I; Huber A; Pfannstiel J
    J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 6. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.
    Luu RA; Kootstra JD; Nesteryuk V; Brunton CN; Parales JV; Ditty JL; Parales RE
    Mol Microbiol; 2015 Apr; 96(1):134-47. PubMed ID: 25582673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis.
    Kim YH; Cho K; Yun SH; Kim JY; Kwon KH; Yoo JS; Kim SI
    Proteomics; 2006 Feb; 6(4):1301-18. PubMed ID: 16470664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida.
    Nichols NN; Harwood CS
    J Bacteriol; 1997 Aug; 179(16):5056-61. PubMed ID: 9260946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 10. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea.
    Ravi K; García-Hidalgo J; Nöbel M; Gorwa-Grauslund MF; Lidén G
    AMB Express; 2018 Mar; 8(1):32. PubMed ID: 29500726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in
    Johnson CW; Abraham PE; Linger JG; Khanna P; Hettich RL; Beckham GT
    Metab Eng Commun; 2017 Dec; 5():19-25. PubMed ID: 29188181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440.
    Bleem AC; Kuatsjah E; Johnsen J; Mohamed ET; Alexander WG; Kellermyer ZA; Carroll AL; Rossi R; Schlander IB; Peabody V GL; Guss AM; Feist AM; Beckham GT
    Metab Eng; 2024 Jul; 84():145-157. PubMed ID: 38936762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzoate transport in Pseudomonas putida CSV86.
    Choudhary A; Purohit H; Phale PS
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28591829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440.
    Mohammad SH; Bhukya B
    Bioresour Technol; 2022 Nov; 363():128001. PubMed ID: 36150429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.
    Sonoki T; Morooka M; Sakamoto K; Otsuka Y; Nakamura M; Jellison J; Goodell B
    J Biotechnol; 2014 Dec; 192 Pt A():71-7. PubMed ID: 25449108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the Gene Responsible for Lignin-Derived Low-Molecular-Weight Compound Catabolism in
    Hirose J; Tsukimata R; Miyatake M; Yokoi H
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33260964
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R; Overhage J; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.