These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28299468)

  • 41. USAT: A Unified Score-Based Association Test for Multiple Phenotype-Genotype Analysis.
    Ray D; Pankow JS; Basu S
    Genet Epidemiol; 2016 Jan; 40(1):20-34. PubMed ID: 26638693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies.
    Chen Z; Ng HK; Li J; Liu Q; Huang H
    Stat Methods Med Res; 2017 Apr; 26(2):567-582. PubMed ID: 25253574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide association mapping including phenotypes from relatives without genotypes.
    Wang H; Misztal I; Aguilar I; Legarra A; Muir WM
    Genet Res (Camb); 2012 Apr; 94(2):73-83. PubMed ID: 22624567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea).
    Dong L; Xiao S; Wang Q; Wang Z
    BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. To stratify or not to stratify: power considerations for population-based genome-wide association studies of quantitative traits.
    Behrens G; Winkler TW; Gorski M; Leitzmann MF; Heid IM
    Genet Epidemiol; 2011 Dec; 35(8):867-79. PubMed ID: 22125224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SurvivalGWAS_SV: software for the analysis of genome-wide association studies of imputed genotypes with "time-to-event" outcomes.
    Syed H; Jorgensen AL; Morris AP
    BMC Bioinformatics; 2017 May; 18(1):265. PubMed ID: 28525968
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-locus Test and Correction for Confounding Effects in Genome-Wide Association Studies.
    Chen D; Liu C; Xie J
    Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 27232635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests.
    Yu Z; Demetriou M; Gillen DL
    Genet Epidemiol; 2015 Sep; 39(6):446-55. PubMed ID: 26095143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. snpGeneSets: An R Package for Genome-Wide Study Annotation.
    Mei H; Li L; Jiang F; Simino J; Griswold M; Mosley T; Liu S
    G3 (Bethesda); 2016 Dec; 6(12):4087-4095. PubMed ID: 27807048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A scalable estimator of SNP heritability for biobank-scale data.
    Wu Y; Sankararaman S
    Bioinformatics; 2018 Jul; 34(13):i187-i194. PubMed ID: 29950019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Fast Method for Estimating Statistical Power of Multivariate GWAS in Real Case Scenarios: Examples from the Field of Imaging Genetics.
    Couvy-Duchesne B; Strike LT; McMahon KL; de Zubicaray GI; Thompson PM; Martin NG; Medland SE; Wright MJ
    Behav Genet; 2019 Jan; 49(1):112-121. PubMed ID: 30443694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The performance of robust test statistics with categorical data.
    Savalei V; Rhemtulla M
    Br J Math Stat Psychol; 2013 May; 66(2):201-23. PubMed ID: 22568535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust association tests under different genetic models, allowing for binary or quantitative traits and covariates.
    So HC; Sham PC
    Behav Genet; 2011 Sep; 41(5):768-75. PubMed ID: 21305351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables.
    Katsikatsou M; Moustaki I
    Psychometrika; 2016 Dec; 81(4):1046-1068. PubMed ID: 27734296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic surrogates improve power for genome-wide association studies of partially missing phenotypes in population biobanks.
    McCaw ZR; Gao J; Lin X; Gronsbell J
    Nat Genet; 2024 Jul; 56(7):1527-1536. PubMed ID: 38872030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.
    Sul JH; Bilow M; Yang WY; Kostem E; Furlotte N; He D; Eskin E
    PLoS Genet; 2016 Mar; 12(3):e1005849. PubMed ID: 26943367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data.
    Grellmann C; Bitzer S; Neumann J; Westlye LT; Andreassen OA; Villringer A; Horstmann A
    Neuroimage; 2015 Feb; 107():289-310. PubMed ID: 25527238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical selection of biological models for genome-wide association analyses.
    Bi W; Kang G; Pounds SB
    Methods; 2018 Aug; 145():67-75. PubMed ID: 29803781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methods and Tools in Genome-wide Association Studies.
    Gumpinger AC; Roqueiro D; Grimm DG; Borgwardt KM
    Methods Mol Biol; 2018; 1819():93-136. PubMed ID: 30421401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.