These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28299515)

  • 1. The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation.
    Lombardi F; Scippa GS; Lasserre B; Montagnoli A; Tognetti R; Marchetti M; Chiatante D
    J Plant Res; 2017 May; 130(3):515-525. PubMed ID: 28299515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of Spartium junceum roots to slope: anchorage and gene factors.
    Scippa GS; Di Michele M; Di Iorio A; Costa A; Lasserre B; Chiatante D
    Ann Bot; 2006 May; 97(5):857-66. PubMed ID: 16352708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root system architecture of Quercus pubescens trees growing on different sloping conditions.
    Di Iorio A; Lasserre B; Scippa GS; Chiatante D
    Ann Bot; 2005 Jan; 95(2):351-61. PubMed ID: 15567806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].
    Xiong YM; Xia HP; Li ZA; Cai XA
    Ying Yong Sheng Tai Xue Bao; 2007 Apr; 18(4):895-904. PubMed ID: 17615891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical and biochemical studies of Spartium junceum infected by Xylella fastidiosa subsp. multiplex ST 87.
    Falsini S; Tani C; Sambuco G; Papini A; Faraoni P; Campigli S; Ghelardini L; Bleve G; Rizzo D; Ricciolini M; Scarpelli I; Drosera L; Gnerucci A; Hand FP; Marchi G; Schiff S
    Protoplasma; 2022 Jan; 259(1):103-115. PubMed ID: 33860374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous isoflavone methylation correlates with the in vitro rooting phases of Spartium junceum L. (Leguminosae).
    Clematis F; Viglione S; Beruto M; Lanzotti V; Dolci P; Poncet C; Curir P
    J Plant Physiol; 2014 Sep; 171(14):1267-75. PubMed ID: 25014262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of tension wood like gelatinous fibres in the roots of Acacia nilotica (Lam.) Willd.
    Pramod S; Patel VR; Rajput KS; Rao KS
    Planta; 2014 Dec; 240(6):1191-202. PubMed ID: 25113511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays).
    Chimungu JG; Loades KW; Lynch JP
    J Exp Bot; 2015 Jun; 66(11):3151-62. PubMed ID: 25903914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root contraction in Cycas and Zamia (Cycadales) determined by gelatinous fibers.
    Tomlinson PB; Magellan TM; Griffith MP
    Am J Bot; 2014 Aug; 101(8):1275-85. PubMed ID: 25077507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Root Moisture Content and Diameter on Root Tensile Properties.
    Yang Y; Chen L; Li N; Zhang Q
    PLoS One; 2016; 11(3):e0151791. PubMed ID: 27003872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species.
    Wang Y; Dong X; Wang H; Wang Z; Gu J
    Tree Physiol; 2016 Jan; 36(1):99-108. PubMed ID: 26423336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using three-dimensional plant root architecture in models of shallow-slope stability.
    Danjon F; Barker DH; Drexhage M; Stokes A
    Ann Bot; 2008 May; 101(8):1281-93. PubMed ID: 17766845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the impact of root morphology on overturning mechanisms: a modelling approach.
    Fourcaud T; Ji JN; Zhang ZQ; Stokes A
    Ann Bot; 2008 May; 101(8):1267-80. PubMed ID: 17942593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types.
    Zadworny M; McCormack ML; Rawlik K; Jagodziński AM
    Tree Physiol; 2015 Jun; 35(6):644-52. PubMed ID: 25802410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China.
    Wang H; Wang Z; Dong X
    PLoS One; 2019; 14(5):e0215126. PubMed ID: 31042717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.
    Bengough AG; McKenzie BM; Hallett PD; Valentine TA
    J Exp Bot; 2011 Jan; 62(1):59-68. PubMed ID: 21118824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.
    Hajek P; Leuschner C; Hertel D; Delzon S; Schuldt B
    Tree Physiol; 2014 Jul; 34(7):744-56. PubMed ID: 25009155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength.
    Yan J; Wang B; Zhou Y
    J Plant Res; 2017 Sep; 130(5):941-950. PubMed ID: 28315970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical adaptations of cleavers (Galium aparine).
    Goodman AM
    Ann Bot; 2005 Feb; 95(3):475-80. PubMed ID: 15574483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological responses of plant roots to mechanical stress.
    Potocka I; Szymanowska-Pulka J
    Ann Bot; 2018 Nov; 122(5):711-723. PubMed ID: 29471488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.