These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28299666)
21. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Lee YS; Lee JW; Jang JW; Chi XZ; Kim JH; Li YH; Kim MK; Kim DM; Choi BS; Kim EG; Chung JH; Lee OJ; Lee YM; Suh JW; Chuang LS; Ito Y; Bae SC Cancer Cell; 2013 Nov; 24(5):603-16. PubMed ID: 24229708 [TBL] [Abstract][Full Text] [Related]
22. RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Wotton SF; Blyth K; Kilbey A; Jenkins A; Terry A; Bernardin-Fried F; Friedman AD; Baxter EW; Neil JC; Cameron ER Oncogene; 2004 Jul; 23(32):5476-86. PubMed ID: 15133495 [TBL] [Abstract][Full Text] [Related]
23. Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. Kim JH; Choi JK; Cinghu S; Jang JW; Lee YS; Li YH; Goh YM; Chi XZ; Lee KS; Wee H; Bae SC J Cell Biochem; 2009 Jun; 107(3):557-65. PubMed ID: 19350572 [TBL] [Abstract][Full Text] [Related]
24. C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development. Omori K; Otani S; Date Y; Ueno T; Ito T; Umeda M; Ito K Oncogene; 2023 Aug; 42(33):2485-2494. PubMed ID: 37402881 [TBL] [Abstract][Full Text] [Related]
25. RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. Fowler M; Borazanci E; McGhee L; Pylant SW; Williams BJ; Glass J; Davis JN; Meyers S J Cell Biochem; 2006 Jan; 97(1):1-17. PubMed ID: 16237704 [TBL] [Abstract][Full Text] [Related]
26. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Pauklin S; Kristjuhan A; Maimets T; Jaks V Biochem Biophys Res Commun; 2005 Aug; 334(2):386-94. PubMed ID: 16004968 [TBL] [Abstract][Full Text] [Related]
27. Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Solomon H; Brosh R; Buganim Y; Rotter V Discov Med; 2010 May; 9(48):448-54. PubMed ID: 20515613 [TBL] [Abstract][Full Text] [Related]
28. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome. Yokomizo-Nakano T; Kubota S; Bai J; Hamashima A; Morii M; Sun Y; Katagiri S; Iimori M; Kanai A; Tanaka D; Oshima M; Harada Y; Ohyashiki K; Iwama A; Harada H; Osato M; Sashida G Cancer Res; 2020 Jun; 80(12):2523-2536. PubMed ID: 32341038 [TBL] [Abstract][Full Text] [Related]
29. Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. Kim HR; Oh BC; Choi JK; Bae SC J Cell Biochem; 2008 Nov; 105(4):1048-58. PubMed ID: 18767071 [TBL] [Abstract][Full Text] [Related]
30. [Novel role of RUNX3 in the regulation of p53-mediated apoptosis in response to DNA damage]. Ozaki T; Yamada C; Nakagawara A Seikagaku; 2011 Aug; 83(8):751-4. PubMed ID: 21942099 [No Abstract] [Full Text] [Related]
31. The emerging role of RUNX3 in cancer metastasis (Review). Chen F; Liu X; Bai J; Pei D; Zheng J Oncol Rep; 2016 Mar; 35(3):1227-36. PubMed ID: 26708741 [TBL] [Abstract][Full Text] [Related]
32. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Lau QC; Raja E; Salto-Tellez M; Liu Q; Ito K; Inoue M; Putti TC; Loh M; Ko TK; Huang C; Bhalla KN; Zhu T; Ito Y; Sukumar S Cancer Res; 2006 Jul; 66(13):6512-20. PubMed ID: 16818622 [TBL] [Abstract][Full Text] [Related]
33. Molecular pathology of RUNX3 in human carcinogenesis. Subramaniam MM; Chan JY; Yeoh KG; Quek T; Ito K; Salto-Tellez M Biochim Biophys Acta; 2009 Dec; 1796(2):315-31. PubMed ID: 19682550 [TBL] [Abstract][Full Text] [Related]
34. Runx3 in Immunity, Inflammation and Cancer. Lotem J; Levanon D; Negreanu V; Bauer O; Hantisteanu S; Dicken J; Groner Y Adv Exp Med Biol; 2017; 962():369-393. PubMed ID: 28299669 [TBL] [Abstract][Full Text] [Related]
35. In vitro differentiation of Runx3-/- p53-/- gastric epithelial cells into intestinal type cells. Fukamachi H; Mimata A; Tanaka I; Ito K; Ito Y; Yuasa Y Cancer Sci; 2008 Apr; 99(4):671-6. PubMed ID: 18377419 [TBL] [Abstract][Full Text] [Related]
36. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma. Date Y; Taniuchi I; Ito K Gene; 2022 Apr; 819():146234. PubMed ID: 35114276 [TBL] [Abstract][Full Text] [Related]
37. Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Lee KS; Lee YS; Lee JM; Ito K; Cinghu S; Kim JH; Jang JW; Li YH; Goh YM; Chi XZ; Wee H; Lee HW; Hosoya A; Chung JH; Jang JJ; Kundu JK; Surh YJ; Kim WJ; Ito Y; Jung HS; Bae SC Oncogene; 2010 Jun; 29(23):3349-61. PubMed ID: 20228843 [TBL] [Abstract][Full Text] [Related]
38. Expression analysis of Runx3 and other Runx family members during Xenopus development. Park BY; Saint-Jeannet JP Gene Expr Patterns; 2010 Jun; 10(4-5):159-66. PubMed ID: 20433948 [TBL] [Abstract][Full Text] [Related]
39. Ha-Ras(G12V) induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Takaoka M; Harada H; Deramaudt TB; Oyama K; Andl CD; Johnstone CN; Rhoades B; Enders GH; Opitz OG; Nakagawa H Oncogene; 2004 Sep; 23(40):6760-8. PubMed ID: 15273725 [TBL] [Abstract][Full Text] [Related]