BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28299668)

  • 41. The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages.
    Xia D; Zhang Y; Huang X; Sun Y; Zhang H
    Dev Biol; 2007 Sep; 309(2):259-72. PubMed ID: 17706957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mammary epithelial reconstitution with gene-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation.
    Vafaizadeh V; Klemmt P; Brendel C; Weber K; Doebele C; Britt K; Grez M; Fehse B; Desriviéres S; Groner B
    Stem Cells; 2010 May; 28(5):928-38. PubMed ID: 20235097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of RUNX Family Transcription Factors in DNA Damage Response.
    Samarakkody AS; Shin NY; Cantor AB
    Mol Cells; 2020 Feb; 43(2):99-106. PubMed ID: 32024352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression.
    Chuang LS; Khor JM; Lai SK; Garg S; Krishnan V; Koh CG; Lee SH; Ito Y
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6490-5. PubMed ID: 27217562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models.
    Neil JC; Gilroy K; Borland G; Hay J; Terry A; Kilbey A
    Adv Exp Med Biol; 2017; 962():247-264. PubMed ID: 28299662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Emerging Roles of RUNX Transcription Factors in Epithelial-Mesenchymal Transition.
    Voon DC; Thiery JP
    Adv Exp Med Biol; 2017; 962():471-489. PubMed ID: 28299674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer.
    Sakakura C; Hagiwara A; Miyagawa K; Nakashima S; Yoshikawa T; Kin S; Nakase Y; Ito K; Yamagishi H; Yazumi S; Chiba T; Ito Y
    Int J Cancer; 2005 Jan; 113(2):221-8. PubMed ID: 15386419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes).
    Ng CE; Osato M; Tay BH; Venkatesh B; Ito Y
    Gene; 2007 Sep; 399(2):162-73. PubMed ID: 17604919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Luminal progenitors restrict their lineage potential during mammary gland development.
    Rodilla V; Dasti A; Huyghe M; Lafkas D; Laurent C; Reyal F; Fre S
    PLoS Biol; 2015 Feb; 13(2):e1002069. PubMed ID: 25688859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RUNX family: Oncogenes or tumor suppressors (Review).
    Otálora-Otálora BA; Henríquez B; López-Kleine L; Rojas A
    Oncol Rep; 2019 Jul; 42(1):3-19. PubMed ID: 31059069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mammary gland stem cells: current status and future challenges.
    Fridriksdottir AJ; Petersen OW; Rønnov-Jessen L
    Int J Dev Biol; 2011; 55(7-9):719-29. PubMed ID: 22161829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity.
    Van Keymeulen A; Lee MY; Ousset M; Brohée S; Rorive S; Giraddi RR; Wuidart A; Bouvencourt G; Dubois C; Salmon I; Sotiriou C; Phillips WA; Blanpain C
    Nature; 2015 Sep; 525(7567):119-23. PubMed ID: 26266985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Roles of RUNX Proteins in Lymphocyte Function and Anti-Tumor Immunity.
    Seo W; Nomura A; Taniuchi I
    Cells; 2022 Oct; 11(19):. PubMed ID: 36231078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antagonistic interplay between ThPOK and Runx in lineage choice of thymocytes.
    Egawa T; Taniuchi I
    Blood Cells Mol Dis; 2009; 43(1):27-9. PubMed ID: 19375362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CBFbeta is a facultative Runx partner in the sea urchin embryo.
    Robertson AJ; Dickey-Sims C; Ransick A; Rupp DE; McCarthy JJ; Coffman JA
    BMC Biol; 2006 Feb; 4():4. PubMed ID: 16469111
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach.
    Kamikubo Y
    Mol Cells; 2020 Feb; 43(2):198-202. PubMed ID: 31991534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The RUNX family: developmental regulators in cancer.
    Ito Y; Bae SC; Chuang LS
    Nat Rev Cancer; 2015 Feb; 15(2):81-95. PubMed ID: 25592647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Runx/Cbfb signaling regulates postnatal development of granular convoluted tubule in the mouse submandibular gland.
    Islam MN; Itoh S; Yanagita T; Sumiyoshi K; Hayano S; Kuremoto K; Kurosaka H; Honjo T; Kawanabe N; Kamioka H; Sakai T; Ishimaru N; Taniuchi I; Yamashiro T
    Dev Dyn; 2015 Mar; 244(3):488-96. PubMed ID: 25410786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution.
    Villadsen R
    APMIS; 2005; 113(11-12):903-21. PubMed ID: 16480457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 'Runxs and regulations' of sensory and motor neuron subtype differentiation: implications for hematopoietic development.
    Stifani S; Ma Q
    Blood Cells Mol Dis; 2009; 43(1):20-6. PubMed ID: 19349198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.