BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 28299696)

  • 1. Finger-Powered Electro-Digital-Microfluidics.
    Peng C; Ju YS
    Methods Mol Biol; 2017; 1572():293-311. PubMed ID: 28299696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.
    Peng C; Zhang Z; Kim CJ; Ju YS
    Lab Chip; 2014 Mar; 14(6):1117-22. PubMed ID: 24452784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finger-powered electrophoretic transport of discrete droplets for portable digital microfluidics.
    Peng C; Wang Y; Sungtaek Ju Y
    Lab Chip; 2016 Jul; 16(13):2521-31. PubMed ID: 27292054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet Velocity Measurement Based on Dielectric Layer Thickness Variation Using Digital Microfluidic Devices.
    Zulkepli SNIS; Hamid NH; Shukla V
    Biosensors (Basel); 2018 May; 8(2):. PubMed ID: 29738428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection.
    Decrop D; Ruiz EP; Kumar PT; Tripodi L; Kokalj T; Lammertyn J
    Methods Mol Biol; 2017; 1547():85-101. PubMed ID: 28044289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Hand-Held and Battery-Operated Digital Microfluidic Device Using EWOD for Lab-on-a-Chip Applications.
    Grant N; Geiss B; Field S; Demann A; Chen TW
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays.
    Hadwen B; Broder GR; Morganti D; Jacobs A; Brown C; Hector JR; Kubota Y; Morgan H
    Lab Chip; 2012 Sep; 12(18):3305-13. PubMed ID: 22785575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration and detection of biochemical assays in digital microfluidic LOC devices.
    Malic L; Brassard D; Veres T; Tabrizian M
    Lab Chip; 2010 Feb; 10(4):418-31. PubMed ID: 20126681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-demand droplet loading for automated organic chemistry on digital microfluidics.
    Shah GJ; Ding H; Sadeghi S; Chen S; Kim CJ; van Dam RM
    Lab Chip; 2013 Jul; 13(14):2785-95. PubMed ID: 23670035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets.
    Geng H; Feng J; Stabryla LM; Cho SK
    Lab Chip; 2017 Mar; 17(6):1060-1068. PubMed ID: 28217772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper microfluidics goes digital.
    Fobel R; Kirby AE; Ng AH; Farnood RR; Wheeler AR
    Adv Mater; 2014 May; 26(18):2838-43. PubMed ID: 24458780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications.
    Tong Z; Shen C; Li Q; Yin H; Mao H
    Analyst; 2023 Mar; 148(7):1399-1421. PubMed ID: 36752059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
    Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM
    Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.