BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 28299696)

  • 61. Microfluidic paper-based devices for bioanalytical applications.
    Santhiago M; Nery EW; Santos GP; Kubota LT
    Bioanalysis; 2014 Jan; 6(1):89-106. PubMed ID: 24341497
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 63. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis.
    Shah GJ; Ohta AT; Chiou EP; Wu MC; Kim CJ
    Lab Chip; 2009 Jun; 9(12):1732-9. PubMed ID: 19495457
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns.
    Park SY; Teitell MA; Chiou EP
    Lab Chip; 2010 Jul; 10(13):1655-61. PubMed ID: 20448870
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemiluminescence detector based on a single planar transparent digital microfluidic device.
    Zeng X; Zhang K; Pan J; Chen G; Liu AQ; Fan SK; Zhou J
    Lab Chip; 2013 Jul; 13(14):2714-20. PubMed ID: 23674102
    [TBL] [Abstract][Full Text] [Related]  

  • 67. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it?
    Mukhopadhyay R
    Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143
    [No Abstract]   [Full Text] [Related]  

  • 68. Digital microfluidics-like manipulation of electrokinetically preconcentrated bioparticle plugs in continuous-flow.
    Park S; Sabbagh B; Abu-Rjal R; Yossifon G
    Lab Chip; 2022 Feb; 22(4):814-825. PubMed ID: 35080550
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application.
    Choi K; Kim JY; Ahn JH; Choi JM; Im M; Choi YK
    Lab Chip; 2012 Apr; 12(8):1533-9. PubMed ID: 22402581
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Micro-optics for microfluidic analytical applications.
    Yang H; Gijs MAM
    Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multilayer hybrid microfluidics: a digital-to-channel interface for sample processing and separations.
    Watson MW; Jebrail MJ; Wheeler AR
    Anal Chem; 2010 Aug; 82(15):6680-6. PubMed ID: 20670000
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A droplet energy harvesting and actuation system for self-powered digital microfluidics.
    Chen G; Liu X; Li S; Dong M; Jiang D
    Lab Chip; 2018 Mar; 18(7):1026-1034. PubMed ID: 29536066
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.
    Freire SL; Thorne N; Wutkowski M; Dao S
    J Vis Exp; 2014 Nov; (93):e52091. PubMed ID: 25407533
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.
    Joseph K; Ibrahim F; Cho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3217-20. PubMed ID: 26736977
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Progress in the development and integration of fluid flow control tools in paper microfluidics.
    Fu E; Downs C
    Lab Chip; 2017 Feb; 17(4):614-628. PubMed ID: 28119982
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Concentration and binary separation of micro particles for droplet-based digital microfluidics.
    Cho SK; Zhao Y; Kim CJ
    Lab Chip; 2007 Apr; 7(4):490-8. PubMed ID: 17389966
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.
    Vloemans D; Van Hileghem L; Ordutowski H; Dal Dosso F; Spasic D; Lammertyn J
    Methods Mol Biol; 2024; 2804():3-50. PubMed ID: 38753138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.