These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Development of a sperm-flagella driven micro-bio-robot. Magdanz V; Sanchez S; Schmidt OG Adv Mater; 2013 Dec; 25(45):6581-8. PubMed ID: 23996782 [TBL] [Abstract][Full Text] [Related]
44. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Wu C; Zhang G; Xia T; Li Z; Zhao K; Deng Z; Guo D; Peng B Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():155-65. PubMed ID: 26117750 [TBL] [Abstract][Full Text] [Related]
45. Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties. Qi M; Gong X; Wu B; Zhang G Langmuir; 2017 Apr; 33(14):3525-3533. PubMed ID: 28298087 [TBL] [Abstract][Full Text] [Related]
46. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Shum H; Gaffney EA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813 [TBL] [Abstract][Full Text] [Related]
48. Dynamics of a magnetically rotated micro swimmer inspired by paramecium metachronal wave. Nematollahisarvestani A; Shamloo A Prog Biophys Mol Biol; 2019 Mar; 142():32-42. PubMed ID: 30096335 [TBL] [Abstract][Full Text] [Related]
49. Physics of microswimmers--single particle motion and collective behavior: a review. Elgeti J; Winkler RG; Gompper G Rep Prog Phys; 2015 May; 78(5):056601. PubMed ID: 25919479 [TBL] [Abstract][Full Text] [Related]
50. Swimming trajectories of a three-sphere microswimmer near a wall. Daddi-Moussa-Ider A; Lisicki M; Hoell C; Löwen H J Chem Phys; 2018 Apr; 148(13):134904. PubMed ID: 29626882 [TBL] [Abstract][Full Text] [Related]
51. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Liu M; Liu T; Chen X; Yang J; Deng J; He W; Zhang X; Lei Q; Hu X; Luo G; Wu J J Nanobiotechnology; 2018 Nov; 16(1):89. PubMed ID: 30419925 [TBL] [Abstract][Full Text] [Related]
52. Synchronisation through learning for two self-propelled swimmers. Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166 [TBL] [Abstract][Full Text] [Related]
53. Self-starting micromotors in a bacterial bath. Angelani L; Di Leonardo R; Ruocco G Phys Rev Lett; 2009 Jan; 102(4):048104. PubMed ID: 19257480 [TBL] [Abstract][Full Text] [Related]
56. Enhanced motility of a microswimmer in rigid and elastic confinement. Ledesma-Aguilar R; Yeomans JM Phys Rev Lett; 2013 Sep; 111(13):138101. PubMed ID: 24116818 [TBL] [Abstract][Full Text] [Related]
57. Light controlled 3D micromotors powered by bacteria. Vizsnyiczai G; Frangipane G; Maggi C; Saglimbeni F; Bianchi S; Di Leonardo R Nat Commun; 2017 Jun; 8():15974. PubMed ID: 28656975 [TBL] [Abstract][Full Text] [Related]
58. Dynamics of groups of magnetically driven artificial microswimmers. Buzhardt J; Tallapragada P Phys Rev E; 2019 Sep; 100(3-1):033106. PubMed ID: 31640057 [TBL] [Abstract][Full Text] [Related]
59. Enhanced diffusion of tracer particles in dilute bacterial suspensions. Morozov A; Marenduzzo D Soft Matter; 2014 Apr; 10(16):2748-58. PubMed ID: 24668266 [TBL] [Abstract][Full Text] [Related]
60. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques? ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]