These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28300016)

  • 1. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures.
    Wang Z; Fang X; Li H; Liu W
    Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds.
    Styman PD; Hyde JM; Wilford K; Parfitt D; Riddle N; Smith GD
    Ultramicroscopy; 2015 Dec; 159 Pt 2():292-8. PubMed ID: 26051655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.
    Thuvander M; Andersson M; Stiller K
    Ultramicroscopy; 2013 Sep; 132():265-70. PubMed ID: 23234833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe-Cu steel characterized by atom-probe tomography.
    Kolli RP; Seidman DN
    Microsc Microanal; 2014 Dec; 20(6):1727-39. PubMed ID: 25254942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel.
    Kolli RP; Seidman DN
    Microsc Microanal; 2007 Aug; 13(4):272-84. PubMed ID: 17637076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atom probe perspective on phase separation and precipitation in duplex stainless steels.
    Guo W; Garfinkel DA; Tucker JD; Haley D; Young GA; Poplawsky JD
    Nanotechnology; 2016 Jun; 27(25):254004. PubMed ID: 27181108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Elevated Temperature Thermal Stability of Nanoscale Mn-Ni-Si Precipitates Formed at Lower Temperature in Highly Irradiated Reactor Pressure Vessel Steels.
    Almirall N; Wells PB; Ke H; Edmondson P; Morgan D; Yamamoto T; Odette GR
    Sci Rep; 2019 Jul; 9(1):9587. PubMed ID: 31270423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.
    Cazottes S; Danoix F; Fnidiki A; Lemarchand D; Baricco M
    Ultramicroscopy; 2009 Apr; 109(5):625-30. PubMed ID: 19168287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.
    Mulholland MD; Seidman DN
    Microsc Microanal; 2011 Dec; 17(6):950-62. PubMed ID: 22030271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cu on Nanoscale Precipitation Evolution and Mechanical Properties of a Fe-NiAl Alloy.
    Shen Q; Chen H; Liu W
    Microsc Microanal; 2017 Apr; 23(2):350-359. PubMed ID: 28320490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data on Cu- and Ni-Si-Mn-rich solute clustering in a neutron irradiated austenitic stainless steel.
    Levine SM; Pareige C; Jiao Z; Edmondson PD; Was GS; Zinkle SJ; Bhattacharya A
    Data Brief; 2022 Jun; 42():108263. PubMed ID: 35647234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel.
    Zhu C; Xiong XY; Cerezo A; Hardwicke R; Krauss G; Smith GD
    Ultramicroscopy; 2007 Sep; 107(9):808-12. PubMed ID: 17449183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cu Alloying on Mechanical Properties of Medium-C Steel after Long-Time Tempering at 500 °C.
    Salvetr P; Gokhman A; Svoboda M; Donik Č; Podstranská I; Kotous J; Nový Z
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germanium network connecting precipitates in an Mg-rich Al-Mg-Ge alloy.
    Bjørge R; Marioara CD; Andersen SJ; Holmestad R
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S129-33. PubMed ID: 20554756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atom probe study of vanadium interphase precipitates and randomly distributed vanadium precipitates in ferrite.
    Nöhrer M; Zamberger S; Primig S; Leitner H
    Micron; 2013; 54-55():57-64. PubMed ID: 24041583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mn promotes the rate of nucleation and growth of precipitates by increasing Frenkel pairs in Fe-Cu based alloys.
    Li T; Xie Y; Wang X; Shen Q; Li J; Guo H; Xu J; Liu W
    RSC Adv; 2019 Jun; 9(34):19620-19629. PubMed ID: 35519409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys.
    Höring S; Wanderka N; Banhart J
    Ultramicroscopy; 2009 Apr; 109(5):574-9. PubMed ID: 19153011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging.
    Maetz JY; Cazottes S; Verdu C; Danoix F; Kléber X
    Microsc Microanal; 2016 Apr; 22(2):463-73. PubMed ID: 26940550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Structure of Hardening Precipitates in Al-Mg-Si Alloys: Influence of Minor Additions of Cu and Zn.
    Bartawi EH; Marioara CD; Shaban G; Hatzoglou C; Holmestad R; Ambat R
    ACS Nano; 2023 Dec; 17(23):24115-24129. PubMed ID: 38010110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.