These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28300043)

  • 1. Low-energy theory for strained graphene: an approach up to second-order in the strain tensor.
    Oliva-Leyva M; Wang C
    J Phys Condens Matter; 2017 Apr; 29(16):165301. PubMed ID: 28300043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic AC conductivity of strained graphene.
    Oliva-Leyva M; Naumis GG
    J Phys Condens Matter; 2014 Mar; 26(12):125302. PubMed ID: 24599054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Hamiltonian of strained graphene.
    Linnik TL
    J Phys Condens Matter; 2012 May; 24(20):205302. PubMed ID: 22532092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fingerprints of a position-dependent Fermi velocity on scanning tunnelling spectra of strained graphene.
    Oliva-Leyva M; Barrios-Vargas JE; Wang C
    J Phys Condens Matter; 2018 Feb; 30(8):085702. PubMed ID: 29334358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductance and shot noise in strained bilayer graphene.
    Pearce AJ; Cavaliere F; Mariani E
    J Phys Condens Matter; 2013 Sep; 25(37):375301. PubMed ID: 23963478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of strained graphene and other strained 2D materials: a review.
    Naumis GG; Barraza-Lopez S; Oliva-Leyva M; Terrones H
    Rep Prog Phys; 2017 Sep; 80(9):096501. PubMed ID: 28540862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.
    Cheung WM; Chan KS
    J Phys Condens Matter; 2017 Jun; 29(21):215503. PubMed ID: 28437257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field.
    Georgi A; Nemes-Incze P; Carrillo-Bastos R; Faria D; Viola Kusminskiy S; Zhai D; Schneider M; Subramaniam D; Mashoff T; Freitag NM; Liebmann M; Pratzer M; Wirtz L; Woods CR; Gorbachev RV; Cao Y; Novoselov KS; Sandler N; Morgenstern M
    Nano Lett; 2017 Apr; 17(4):2240-2245. PubMed ID: 28211276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valley Polarization and Inversion in Strained Graphene via Pseudo-Landau Levels, Valley Splitting of Real Landau Levels, and Confined States.
    Li SY; Su Y; Ren YN; He L
    Phys Rev Lett; 2020 Mar; 124(10):106802. PubMed ID: 32216392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction-induced topological insulator states in strained graphene.
    Abanin DA; Pesin DA
    Phys Rev Lett; 2012 Aug; 109(6):066802. PubMed ID: 23006292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Anisotropic Dirac Cone Material: A B
    Zhao Y; Li X; Liu J; Zhang C; Wang Q
    J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space dependent Fermi velocity in strained graphene.
    de Juan F; Sturla M; Vozmediano MA
    Phys Rev Lett; 2012 Jun; 108(22):227205. PubMed ID: 23003648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles.
    Levy N; Burke SA; Meaker KL; Panlasigui M; Zettl A; Guinea F; Castro Neto AH; Crommie MF
    Science; 2010 Jul; 329(5991):544-7. PubMed ID: 20671183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight-binding modeling and low-energy behavior of the semi-Dirac point.
    Banerjee S; Singh RR; Pardo V; Pickett WE
    Phys Rev Lett; 2009 Jul; 103(1):016402. PubMed ID: 19659161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of Dirac point energy at the graphene/oxide interface.
    Xu K; Zeng C; Zhang Q; Yan R; Ye P; Wang K; Seabaugh AC; Xing HG; Suehle JS; Richter CA; Gundlach DJ; Nguyen NV
    Nano Lett; 2013 Jan; 13(1):131-6. PubMed ID: 23244683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-tunable terahertz graphene laser enabled by pseudomagnetic fields in strain-engineered graphene.
    Sun H; Qi Z; Kim Y; Luo M; Yang B; Nam D
    Opt Express; 2021 Jan; 29(2):1892-1902. PubMed ID: 33726394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massive and massless charge carriers in an epitaxially strained alkali metal quantum well on graphene.
    Hell M; Ehlen N; Marini G; Falke Y; Senkovskiy BV; Herbig C; Teichert C; Jolie W; Michely T; Avila J; Santo GD; Torre DM; Petaccia L; Profeta G; Grüneis A
    Nat Commun; 2020 Mar; 11(1):1340. PubMed ID: 32165617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-Induced Landau Levels in Arbitrary Dimensions with an Exact Spectrum.
    Rachel S; Göthel I; Arovas DP; Vojta M
    Phys Rev Lett; 2016 Dec; 117(26):266801. PubMed ID: 28059526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.