These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 28300096)
1. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Moore RH; Thornhill KL; Weinzierl B; Sauer D; D'Ascoli E; Kim J; Lichtenstern M; Scheibe M; Beaton B; Beyersdorf AJ; Barrick J; Bulzan D; Corr CA; Crosbie E; Jurkat T; Martin R; Riddick D; Shook M; Slover G; Voigt C; White R; Winstead E; Yasky R; Ziemba LD; Brown A; Schlager H; Anderson BE Nature; 2017 Mar; 543(7645):411-415. PubMed ID: 28300096 [TBL] [Abstract][Full Text] [Related]
2. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Zhang C; Chen L; Ding S; Zhou X; Chen R; Zhang X; Yu Z; Wang J Sci Total Environ; 2022 May; 820():153233. PubMed ID: 35066040 [TBL] [Abstract][Full Text] [Related]
3. Predicting aviation non-volatile particulate matter emissions at cruise via convolutional neural network. Ge F; Yu Z; Li Y; Zhu M; Zhang B; Zhang Q; Harrison RM; Chen L Sci Total Environ; 2022 Dec; 850():158089. PubMed ID: 35985597 [TBL] [Abstract][Full Text] [Related]
4. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels. Lobo P; Hagen DE; Whitefield PD Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875 [TBL] [Abstract][Full Text] [Related]
5. Corelease of Genotoxic Polycyclic Aromatic Hydrocarbons and Nanoparticles from a Commercial Aircraft Jet Engine - Dependence on Fuel and Thrust. Heeb NV; Muñoz M; Haag R; Wyss S; Schönenberger D; Durdina L; Elser M; Siegerist F; Mohn J; Brem BT Environ Sci Technol; 2024 Jan; 58(3):1615-1624. PubMed ID: 38206005 [TBL] [Abstract][Full Text] [Related]
6. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Liati A; Schreiber D; Alpert PA; Liao Y; Brem BT; Corral Arroyo P; Hu J; Jonsdottir HR; Ammann M; Dimopoulos Eggenschwiler P Environ Pollut; 2019 Apr; 247():658-667. PubMed ID: 30711821 [TBL] [Abstract][Full Text] [Related]
7. Toxicological evaluation of primary particulate matter emitted from combustion of aviation fuel. Melzi G; van Triel J; Durand E; Crayford A; Ortega IK; Barrellon-Vernay R; Duistermaat E; Delhaye D; Focsa C; Boom DHA; Kooter IM; Corsini E; Marinovich M; Gerlofs-Nijland M; Cassee FR Chemosphere; 2024 Sep; 363():142958. PubMed ID: 39069102 [TBL] [Abstract][Full Text] [Related]
8. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3. Kinsey JS; Hays MD; Dong Y; Williams DC; Logan R Environ Sci Technol; 2011 Apr; 45(8):3415-21. PubMed ID: 21428391 [TBL] [Abstract][Full Text] [Related]
9. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
10. Characterization of particulate matter and gaseous emissions of a C-130H aircraft. Corporan E; Quick A; DeWitt MJ J Air Waste Manag Assoc; 2008 Apr; 58(4):474-83. PubMed ID: 18422034 [TBL] [Abstract][Full Text] [Related]
11. Toward Elimination of Soot Emissions from Jet Fuel Combustion. Kelesidis GA; Nagarkar A; Trivanovic U; Pratsinis SE Environ Sci Technol; 2023 Jul; 57(28):10276-10283. PubMed ID: 37406187 [TBL] [Abstract][Full Text] [Related]
12. Methodology to estimate particulate matter emissions from certified commercial aircraft engines. Wayson RL; Fleming GG; Lovinelli R J Air Waste Manag Assoc; 2009 Jan; 59(1):91-100. PubMed ID: 19216192 [TBL] [Abstract][Full Text] [Related]
13. Determination of the effective density and fractal dimension of PM emissions from an aircraft auxiliary power unit. Ubogu EA; Cronly J; Khandelwal B; Roy S J Environ Sci (China); 2018 Dec; 74():11-18. PubMed ID: 30340664 [TBL] [Abstract][Full Text] [Related]
14. Characterization of lubrication oil emissions from aircraft engines. Yu Z; Liscinsky DS; Winstead EL; True BS; Timko MT; Bhargava A; Herndon SC; Miake-Lye RC; Anderson BE Environ Sci Technol; 2010 Dec; 44(24):9530-4. PubMed ID: 21090602 [TBL] [Abstract][Full Text] [Related]
15. Parameterization of H Jones SH; Miake-Lye RC J Air Waste Manag Assoc; 2024 Jul; 74(7):490-510. PubMed ID: 38775880 [TBL] [Abstract][Full Text] [Related]
16. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel. Happonen M; Heikkilä J; Murtonen T; Lehto K; Sarjovaara T; Larmi M; Keskinen J; Virtanen A Environ Sci Technol; 2012 Jun; 46(11):6198-204. PubMed ID: 22568591 [TBL] [Abstract][Full Text] [Related]
17. Reduction of Nonvolatile Particulate Matter Emissions of a Commercial Turbofan Engine at the Ground Level from the Use of a Sustainable Aviation Fuel Blend. Durdina L; Brem BT; Elser M; Schönenberger D; Siegerist F; Anet JG Environ Sci Technol; 2021 Nov; 55(21):14576-14585. PubMed ID: 34662519 [TBL] [Abstract][Full Text] [Related]
18. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions. Lobo P; Rye L; Williams PI; Christie S; Uryga-Bugajska I; Wilson CW; Hagen DE; Whitefield PD; Blakey S; Coe H; Raper D; Pourkashanian M Environ Sci Technol; 2012 Oct; 46(19):10805-11. PubMed ID: 22913288 [TBL] [Abstract][Full Text] [Related]
19. Air quality and health-related impacts of traditional and alternate jet fuels from airport aircraft operations in the U.S. Arter CA; Buonocore JJ; Moniruzzaman C; Yang D; Huang J; Arunachalam S Environ Int; 2022 Jan; 158():106958. PubMed ID: 34710732 [TBL] [Abstract][Full Text] [Related]
20. Civil aviation emissions in Argentina. Puliafito SE Sci Total Environ; 2023 Apr; 869():161675. PubMed ID: 36669658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]