These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28300175)

  • 1. Dynamic cortical participation during bilateral, cyclical ankle movements: effects of aging.
    Yoshida T; Masani K; Zabjek K; Chen R; Popovic MR
    Sci Rep; 2017 Mar; 7():44658. PubMed ID: 28300175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Increase in Corticomuscular Coherence during Bilateral, Cyclical Ankle Movements.
    Yoshida T; Masani K; Zabjek K; Chen R; Popovic MR
    Front Hum Neurosci; 2017; 11():155. PubMed ID: 28420971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic cortical participation during bilateral, cyclical ankle movements: Effects of Parkinson's disease.
    Yoshida T; Masani K; Zabjek K; Popovic MR; Chen R
    PLoS One; 2018; 13(4):e0196177. PubMed ID: 29698430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective corticomuscular connectivity during walking in patients with Parkinson's disease.
    Yokoyama H; Yoshida T; Zabjek K; Chen R; Masani K
    J Neurophysiol; 2020 Nov; 124(5):1399-1414. PubMed ID: 32938303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait.
    Jensen P; Frisk R; Spedden ME; Geertsen SS; Bouyer LJ; Halliday DM; Nielsen JB
    J Mot Behav; 2019; 51(6):668-680. PubMed ID: 30657030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical muscle control of spontaneous movements in human neonates.
    Kanazawa H; Kawai M; Kinai T; Iwanaga K; Mima T; Heike T
    Eur J Neurosci; 2014 Aug; 40(3):2548-53. PubMed ID: 24827432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomuscular coherence with and without additional task in the elderly.
    Johnson AN; Shinohara M
    J Appl Physiol (1985); 2012 Mar; 112(6):970-81. PubMed ID: 22223451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the phase of force production on corticomuscular coherence with agonist and antagonist muscles.
    Desmyttere G; Mathieu E; Begon M; Simoneau-Buessinger E; Cremoux S
    Eur J Neurosci; 2018 Nov; 48(10):3288-3298. PubMed ID: 30141828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical representation of rhythmic foot movements.
    Raethjen J; Govindan RB; Binder S; Zeuner KE; Deuschl G; Stolze H
    Brain Res; 2008 Oct; 1236():79-84. PubMed ID: 18675792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans.
    Hansen NL; Nielsen JB
    J Physiol; 2004 Nov; 561(Pt 1):295-306. PubMed ID: 15358809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults.
    Spedden ME; Beck MM; Christensen MS; Dietz MJ; Karabanov AN; Geertsen SS; Nielsen JB; Lundbye-Jensen J
    Neuroimage; 2020 Sep; 218():116982. PubMed ID: 32450250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor plan differs for young and older adults during similar movements.
    Casamento-Moran A; Chen YT; Lodha N; Yacoubi B; Christou EA
    J Neurophysiol; 2017 Apr; 117(4):1483-1488. PubMed ID: 28077666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F; Longcamp M; Cremoux S; Amarantini D
    Exp Brain Res; 2017 Oct; 235(10):3023-3031. PubMed ID: 28725924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity in the neuromuscular system underlying bimanual coordination.
    de Vries IE; Daffertshofer A; Stegeman DF; Boonstra TW
    J Neurophysiol; 2016 Dec; 116(6):2576-2585. PubMed ID: 27628205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study.
    Riquelme I; Cifre I; Muñoz MA; Montoya P
    J Electromyogr Kinesiol; 2014 Dec; 24(6):928-33. PubMed ID: 25127492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal dynamics of primary motor cortex γ oscillation amplitude and piper corticomuscular coherence changes during motor control.
    Muthukumaraswamy SD
    Exp Brain Res; 2011 Aug; 212(4):623-33. PubMed ID: 21701903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical activity differs between position- and force-control knee extension tasks.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Sowman P; Hodges PW
    Exp Brain Res; 2015 Dec; 233(12):3447-57. PubMed ID: 26292962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Physiol; 2006 Jun; 573(Pt 3):843-55. PubMed ID: 16581867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.
    Zheng Y; Gao L; Wang G; Wang Y; Yang Z; Wang X; Li T; Dang C; Zhu R; Wang J
    Neuropsychologia; 2016 May; 85():199-207. PubMed ID: 27018484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of Locomotor Adaptation with Repetitive Transcranial Magnetic Stimulation Over the Motor Cortex.
    Choi JT; Bouyer LJ; Nielsen JB
    Cereb Cortex; 2015 Jul; 25(7):1981-6. PubMed ID: 24532321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.