These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28300397)

  • 1. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.
    Zhu Y; Gao T; Fan X; Han F; Wang C
    Acc Chem Res; 2017 Apr; 50(4):1022-1031. PubMed ID: 28300397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Ageing of High Energy Lithium-Ion Batteries-Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes.
    Capron O; Gopalakrishnan R; Jaguemont J; Van Den Bossche P; Omar N; Van Mierlo J
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29360787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries.
    Yang J; Yan B; Ye J; Li X; Liu Y; You H
    Phys Chem Chem Phys; 2014 Feb; 16(7):2882-91. PubMed ID: 24424779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Lithium Ion Diffusion of Graphite Anode by the Galvanostatic Intermittent Titration Technique.
    Park JH; Yoon H; Cho Y; Yoo CY
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior.
    Dong X; Yang Y; Wang B; Cao Y; Wang N; Li P; Wang Y; Xia Y
    Adv Sci (Weinh); 2020 Jul; 7(14):2000196. PubMed ID: 32714749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries.
    Geng L; Scheifers JP; Fu C; Zhang J; Fokwa BPT; Guo J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21251-21257. PubMed ID: 28570049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Promising High-Voltage Cathode Material Based on Mesoporous Na
    Zeng J; Yang Y; Lai S; Huang J; Zhang Y; Wang J; Zhao J
    Chemistry; 2017 Nov; 23(66):16898-16905. PubMed ID: 28960575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferentially Oriented TiO
    Auer A; Portenkirchner E; Götsch T; Valero-Vidal C; Penner S; Kunze-Liebhäuser J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36828-36836. PubMed ID: 28972728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation.
    Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhao H; Fu Q; Yang D; Sarapulova A; Pang Q; Meng Y; Wei L; Ehrenberg H; Wei Y; Wang C; Chen G
    ACS Nano; 2020 Sep; 14(9):11809-11820. PubMed ID: 32865959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the Kinetic Behaviors of Na Ions Insertion/Extraction in Na
    Bai Y; Zhang X; Tang K; Yang L; Liu H; Liu L; Zhao Q; Wang Y; Wang X
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31980-31990. PubMed ID: 31403763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
    Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT
    Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.