These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28300407)

  • 1. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer.
    Zhang P; He Z; Van Nostrand JD; Qin Y; Deng Y; Wu L; Tu Q; Wang J; Schadt CW; W Fields M; Hazen TC; Arkin AP; Stahl DA; Zhou J
    Environ Sci Technol; 2017 Apr; 51(7):3609-3620. PubMed ID: 28300407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.
    Zhang P; Wu WM; Van Nostrand JD; Deng Y; He Z; Gihring T; Zhang G; Schadt CW; Watson D; Jardine P; Criddle CS; Brooks S; Marsh TL; Tiedje JM; Arkin AP; Zhou J
    Appl Environ Microbiol; 2015 Jun; 81(12):4164-72. PubMed ID: 25862231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer.
    Gihring TM; Zhang G; Brandt CC; Brooks SC; Campbell JH; Carroll S; Criddle CS; Green SJ; Jardine P; Kostka JE; Lowe K; Mehlhorn TL; Overholt W; Watson DB; Yang Z; Wu WM; Schadt CW
    Appl Environ Microbiol; 2011 Sep; 77(17):5955-65. PubMed ID: 21764967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community.
    Dong J; Yu J; Bao Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34392-34402. PubMed ID: 30306441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction.
    Zhang P; Van Nostrand JD; He Z; Chakraborty R; Deng Y; Curtis D; Fields MW; Hazen TC; Arkin AP; Zhou J
    Environ Sci Technol; 2015 Nov; 49(21):12922-31. PubMed ID: 25835088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor.
    Watson DB; Wu WM; Mehlhorn T; Tang G; Earles J; Lowe K; Gihring TM; Zhang G; Phillips J; Boyanov MI; Spalding BP; Schadt C; Kemner KM; Criddle CS; Jardine PM; Brooks SC
    Environ Sci Technol; 2013 Jun; 47(12):6440-8. PubMed ID: 23697787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation.
    Deng Y; Zhang P; Qin Y; Tu Q; Yang Y; He Z; Schadt CW; Zhou J
    Environ Microbiol; 2016 Jan; 18(1):205-18. PubMed ID: 26177312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. U(VI) bioreduction with emulsified vegetable oil as the electron donor--model application to a field test.
    Tang G; Watson DB; Wu WM; Schadt CW; Parker JC; Brooks SC
    Environ Sci Technol; 2013 Apr; 47(7):3218-25. PubMed ID: 23438796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U(VI) bioreduction with emulsified vegetable oil as the electron donor--microcosm tests and model development.
    Tang G; Wu WM; Watson DB; Parker JC; Schadt CW; Shi X; Brooks SC
    Environ Sci Technol; 2013 Apr; 47(7):3209-17. PubMed ID: 23397992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition.
    Luo W; Wu WM; Yan T; Criddle CS; Jardine PM; Zhou J; Gu B
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):713-21. PubMed ID: 17874092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation.
    Holmes DE; Orelana R; Giloteaux L; Wang LY; Shrestha P; Williams K; Lovley DR; Rotaru AE
    Microb Ecol; 2018 Oct; 76(3):660-667. PubMed ID: 29500492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?
    Boonchayaanant B; Gu B; Wang W; Ortiz ME; Criddle CS
    Biodegradation; 2010 Feb; 21(1):81-95. PubMed ID: 19597947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer.
    Anderson RT; Vrionis HA; Ortiz-Bernad I; Resch CT; Long PE; Dayvault R; Karp K; Marutzky S; Metzler DR; Peacock A; White DC; Lowe M; Lovley DR
    Appl Environ Microbiol; 2003 Oct; 69(10):5884-91. PubMed ID: 14532040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site.
    Vrionis HA; Anderson RT; Ortiz-Bernad I; O'Neill KR; Resch CT; Peacock AD; Dayvault R; White DC; Long PE; Lovley DR
    Appl Environ Microbiol; 2005 Oct; 71(10):6308-18. PubMed ID: 16204552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation.
    Li B; Wu WM; Watson DB; Cardenas E; Chao Y; Phillips DH; Mehlhorn T; Lowe K; Kelly SD; Li P; Tao H; Tiedje JM; Criddle CS; Zhang T
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29453264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site.
    Chang YJ; Peacock AD; Long PE; Stephen JR; McKinley JP; Macnaughton SJ; Hussain AK; Saxton AM; White DC
    Appl Environ Microbiol; 2001 Jul; 67(7):3149-60. PubMed ID: 11425735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.
    Moon HS; McGuinness L; Kukkadapu RK; Peacock AD; Komlos J; Kerkhof LJ; Long PE; Jaffé PR
    Water Res; 2010 Jul; 44(14):4015-28. PubMed ID: 20541787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths.
    Hwang C; Wu W; Gentry TJ; Carley J; Corbin GA; Carroll SL; Watson DB; Jardine PM; Zhou J; Criddle CS; Fields MW
    ISME J; 2009 Jan; 3(1):47-64. PubMed ID: 18769457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium reduction and microbial community development in response to stimulation with different electron donors.
    Barlett M; Moon HS; Peacock AA; Hedrick DB; Williams KH; Long PE; Lovley D; Jaffe PR
    Biodegradation; 2012 Jul; 23(4):535-46. PubMed ID: 22270689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.