BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28301133)

  • 1. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition.
    Wu K; Chen J; McBride JR; Lian T
    Science; 2015 Aug; 349(6248):632-5. PubMed ID: 26250682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron dynamics in plasmons.
    Do HTB; Wen Jun D; Mahfoud Z; Lin W; Bosman M
    Nanoscale; 2021 Feb; 13(5):2801-2810. PubMed ID: 33522538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods.
    Lee SA; Ostovar B; Landes CF; Link S
    J Chem Phys; 2022 Feb; 156(6):064702. PubMed ID: 35168347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot-electron nanoscopy using adiabatic compression of surface plasmons.
    Giugni A; Torre B; Toma A; Francardi M; Malerba M; Alabastri A; Proietti Zaccaria R; Stockman MI; Di Fabrizio E
    Nat Nanotechnol; 2013 Nov; 8(11):845-52. PubMed ID: 24141538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning nanoscale plasmon-exciton coupling
    Dey J; Virdi A; Chandra M
    Nanoscale; 2023 Nov; 15(44):17879-17888. PubMed ID: 37888869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Hot Electron Transfer from Small Au Nanoparticles.
    Liu Y; Chen Q; Cullen DA; Xie Z; Lian T
    Nano Lett; 2020 Jun; 20(6):4322-4329. PubMed ID: 32374614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.
    Tan S; Liu L; Dai Y; Ren J; Zhao J; Petek H
    J Am Chem Soc; 2017 May; 139(17):6160-6168. PubMed ID: 28402118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.