These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28301133)

  • 1. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Photoreversible Tuning of Chemical Interface Damping in Single Gold Nanorods Through Cucurbit[8]uril-Based Host-Guest Interactions.
    Lee J; Ha JW
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45763-45770. PubMed ID: 39143515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition.
    Wu K; Chen J; McBride JR; Lian T
    Science; 2015 Aug; 349(6248):632-5. PubMed ID: 26250682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron dynamics in plasmons.
    Do HTB; Wen Jun D; Mahfoud Z; Lin W; Bosman M
    Nanoscale; 2021 Feb; 13(5):2801-2810. PubMed ID: 33522538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods.
    Lee SA; Ostovar B; Landes CF; Link S
    J Chem Phys; 2022 Feb; 156(6):064702. PubMed ID: 35168347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the plasmon in interfacial charge transfer.
    Ostovar B; Lee SA; Mehmood A; Farrell K; Searles EK; Bourgeois B; Chiang WY; Misiura A; Gross N; Al-Zubeidi A; Dionne JA; Landes CF; Zanni M; Levine BG; Link S
    Sci Adv; 2024 Jul; 10(27):eadp3353. PubMed ID: 38968358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-electron nanoscopy using adiabatic compression of surface plasmons.
    Giugni A; Torre B; Toma A; Francardi M; Malerba M; Alabastri A; Proietti Zaccaria R; Stockman MI; Di Fabrizio E
    Nat Nanotechnol; 2013 Nov; 8(11):845-52. PubMed ID: 24141538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning nanoscale plasmon-exciton coupling
    Dey J; Virdi A; Chandra M
    Nanoscale; 2023 Nov; 15(44):17879-17888. PubMed ID: 37888869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Hot Electron Transfer from Small Au Nanoparticles.
    Liu Y; Chen Q; Cullen DA; Xie Z; Lian T
    Nano Lett; 2020 Jun; 20(6):4322-4329. PubMed ID: 32374614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.