These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28301757)

  • 1. Random-Phase Approximation Methods.
    Chen GP; Voora VK; Agee MM; Balasubramani SG; Furche F
    Annu Rev Phys Chem; 2017 May; 68():421-445. PubMed ID: 28301757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies.
    Chen GP; Agee MM; Furche F
    J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation.
    Nguyen HV; Galli G
    J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple but fully nonlocal correction to the random phase approximation.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
    Bates JE; Mezei PD; Csonka GI; Sun J; Ruzsinszky A
    J Chem Theory Comput; 2017 Jan; 13(1):100-109. PubMed ID: 27996258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions.
    Janesko BG; Henderson TM; Scuseria GE
    J Chem Phys; 2009 Jul; 131(3):034110. PubMed ID: 19624184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.
    Yang Y; Peng D; Davidson ER; Yang W
    J Phys Chem A; 2015 May; 119(20):4923-32. PubMed ID: 25891638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random Phase Approximation Applied to Many-Body Noncovalent Systems.
    Modrzejewski M; Yourdkhani S; Klimeš J
    J Chem Theory Comput; 2020 Jan; 16(1):427-442. PubMed ID: 31738547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Energy Gradients in Range-Separated Hybrid Density Functional Theory with Random Phase Approximation.
    Mussard B; Szalay PG; Ángyán JG
    J Chem Theory Comput; 2014 May; 10(5):1968-79. PubMed ID: 26580524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Range-Separated Density-Functional Theory in Combination with the Random Phase Approximation: An Accuracy Benchmark.
    Kreppel A; Graf D; Laqua H; Ochsenfeld C
    J Chem Theory Comput; 2020 May; 16(5):2985-2994. PubMed ID: 32329618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation.
    Hellgren M; Rohr DR; Gross EK
    J Chem Phys; 2012 Jan; 136(3):034106. PubMed ID: 22280743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.