BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28301758)

  • 1. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles.
    Alipour E; Halverson D; McWhirter S; Walker GC
    Annu Rev Phys Chem; 2017 May; 68():261-283. PubMed ID: 28301758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.
    Michel R; Gradzielski M
    Int J Mol Sci; 2012; 13(9):11610-11642. PubMed ID: 23109874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release.
    Guimarães Sá Correia M; Briuglia ML; Niosi F; Lamprou DA
    Int J Pharm; 2017 Jan; 516(1-2):91-99. PubMed ID: 27840162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer.
    Guo Y; Terazzi E; Seemann R; Fleury JB; Baulin VA
    Sci Adv; 2016 Nov; 2(11):e1600261. PubMed ID: 27847863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes.
    Banerji SK; Hayes MA
    Langmuir; 2007 Mar; 23(6):3305-13. PubMed ID: 17261040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aggregation of striped nanoparticles in mixed phospholipid bilayers.
    Noh SY; Nash A; Notman R
    Nanoscale; 2020 Feb; 12(8):4868-4881. PubMed ID: 31916561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure.
    Tan C; Xia S; Xue J; Xie J; Feng B; Zhang X
    J Agric Food Chem; 2013 Aug; 61(34):8175-84. PubMed ID: 23906192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach.
    N'Diaye M; Michel JP; Rosilio V
    Phys Chem Chem Phys; 2019 Feb; 21(8):4306-4319. PubMed ID: 30724271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of lipopeptides as versatile receptors for the specific binding of nanoparticles and liposomes to solid-supported membranes.
    Schuy S; Treutlein B; Pietuch A; Janshoff A
    Small; 2008 Jul; 4(7):970-81. PubMed ID: 18576284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery.
    Gupta R; Rai B
    Methods Mol Biol; 2020; 2059():225-237. PubMed ID: 31435925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics fabrication of monodisperse biocompatible phospholipid vesicles for encapsulation and delivery of hydrophilic drug or active compound.
    Kong F; Zhang X; Hai M
    Langmuir; 2014 Apr; 30(13):3905-12. PubMed ID: 24552433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering.
    Ip S; MacLaughlin CM; Gunari N; Walker GC
    Langmuir; 2011 Jun; 27(11):7024-33. PubMed ID: 21528851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid lipid-nanoparticle complexes for biomedical applications.
    Vargas KM; Shon YS
    J Mater Chem B; 2019 Feb; 7(5):695-708. PubMed ID: 30740226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology.
    Liu D; Chen L; Jiang S; Zhu S; Qian Y; Wang F; Li R; Xu Q
    J Liposome Res; 2014 Mar; 24(1):17-26. PubMed ID: 24236407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Hydrophobic Tungsten Cluster Complexes with a Phospholipid Bilayer.
    Dovydenko IS; Laricheva YA; Korchagina KV; Grigoryeva AE; Ryabchikova EI; Kompankov NB; Pischur DP; Gushchin AL; Apartsin EK; Sokolov MN
    J Phys Chem B; 2019 Oct; 123(41):8829-8837. PubMed ID: 31539247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations.
    Ishii F; Nii T
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):257-62. PubMed ID: 15748821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and simulation of the liposomal model by using a coarse-grained molecular dynamics approach towards drug delivery goals.
    Parchekani J; Allahverdi A; Taghdir M; Naderi-Manesh H
    Sci Rep; 2022 Feb; 12(1):2371. PubMed ID: 35149771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid Bilayer Softening Due to Hydrophobic Gold Nanoparticle Inclusions.
    Chakraborty S; Abbasi A; Bothun GD; Nagao M; Kitchens CL
    Langmuir; 2018 Nov; 34(44):13416-13425. PubMed ID: 30350687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.