These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 28301768)

  • 1. Theory and Modeling of RNA Structure and Interactions with Metal Ions and Small Molecules.
    Sun LZ; Zhang D; Chen SJ
    Annu Rev Biophys; 2017 May; 46():227-246. PubMed ID: 28301768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of diffuse metal ion binding to RNA.
    Tan ZJ; Chen SJ
    Met Ions Life Sci; 2011; 9():101-24. PubMed ID: 22010269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCTBI: a web server for predicting metal ion effects in RNA structures.
    Sun LZ; Zhang JX; Chen SJ
    RNA; 2017 Aug; 23(8):1155-1165. PubMed ID: 28450533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
    Bisaria N; Herschlag D
    Biochem Soc Trans; 2015 Apr; 43(2):172-8. PubMed ID: 25849913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MeRNA: a database of metal ion binding sites in RNA structures.
    Stefan LR; Zhang R; Levitan AG; Hendrix DK; Brenner SE; Holbrook SR
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D131-4. PubMed ID: 16381830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for prediction of RNA interactions with metal ions and small organic ligands.
    Philips A; Łach G; Bujnicki JM
    Methods Enzymol; 2015; 553():261-85. PubMed ID: 25726469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting RNA-Metal Ion Binding with Ion Dehydration Effects.
    Sun LZ; Chen SJ
    Biophys J; 2019 Jan; 116(2):184-195. PubMed ID: 30612712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding nucleic acid-ion interactions.
    Lipfert J; Doniach S; Das R; Herschlag D
    Annu Rev Biochem; 2014; 83():813-41. PubMed ID: 24606136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Na
    Kolev SK; Petkov PS; Rangelov MA; Trifonov DV; Milenov TI; Vayssilov GN
    Metallomics; 2018 May; 10(5):659-678. PubMed ID: 29667684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the Mg2+ stoichiometry for folding an RNA metal ion core.
    Das R; Travers KJ; Bai Y; Herschlag D
    J Am Chem Soc; 2005 Jun; 127(23):8272-3. PubMed ID: 15941246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding.
    Frederiksen JK; Li NS; Das R; Herschlag D; Piccirilli JA
    RNA; 2012 Jun; 18(6):1123-41. PubMed ID: 22539523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MINAS--a database of Metal Ions in Nucleic AcidS.
    Schnabl J; Suter P; Sigel RK
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D434-8. PubMed ID: 22096233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Method to Predict Ion Effects in RNA Folding.
    Sun LZ; Chen SJ
    Methods Mol Biol; 2017; 1632():1-17. PubMed ID: 28730429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations.
    Hermann T; Westhof E
    Structure; 1998 Oct; 6(10):1303-14. PubMed ID: 9782053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods.
    Bizarro CV; Alemany A; Ritort F
    Nucleic Acids Res; 2012 Aug; 40(14):6922-35. PubMed ID: 22492710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MetalionRNA: computational predictor of metal-binding sites in RNA structures.
    Philips A; Milanowska K; Lach G; Boniecki M; Rother K; Bujnicki JM
    Bioinformatics; 2012 Jan; 28(2):198-205. PubMed ID: 22110243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt contribution to RNA tertiary structure folding stability.
    Tan ZJ; Chen SJ
    Biophys J; 2011 Jul; 101(1):176-87. PubMed ID: 21723828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement.
    Summers JS; Shimko J; Freedman FL; Badger CT; Sturgess M
    J Am Chem Soc; 2002 Dec; 124(50):14934-9. PubMed ID: 12475335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermodynamic framework for the magnesium-dependent folding of RNA.
    Misra VK; Shiman R; Draper DE
    Biopolymers; 2003 May; 69(1):118-36. PubMed ID: 12717727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.
    Stahley MR; Adams PL; Wang J; Strobel SA
    J Mol Biol; 2007 Sep; 372(1):89-102. PubMed ID: 17612557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.