These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28302170)

  • 21. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase.
    Hayashi Y; Yasugi F; Arai M
    PLoS One; 2015; 10(4):e0122217. PubMed ID: 25837679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes.
    Sinha M; Weyda I; Sørensen A; Bruno KS; Ahring BK
    AMB Express; 2017 Dec; 7(1):18. PubMed ID: 28058634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production.
    Basri RS; Rahman RNZRA; Kamarudin NHA; Ali MSM
    Int J Biol Macromol; 2020 Dec; 164():3155-3162. PubMed ID: 32841666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002.
    Knoot CJ; Pakrasi HB
    Sci Rep; 2019 Feb; 9(1):1360. PubMed ID: 30718738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae.
    Kang MK; Zhou YJ; Buijs NA; Nielsen J
    Microb Cell Fact; 2017 May; 16(1):74. PubMed ID: 28464872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases.
    Li N; Chang WC; Warui DM; Booker SJ; Krebs C; Bollinger JM
    Biochemistry; 2012 Oct; 51(40):7908-16. PubMed ID: 22947199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Amino Acids at the Catalytic Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase.
    Srivastava AP; Allen JP; Vaccaro BJ; Hirasawa M; Alkul S; Johnson MK; Knaff DB
    Biochemistry; 2015 Sep; 54(36):5557-68. PubMed ID: 26305228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyanobacterial Enzymes for Bioalkane Production.
    Arai M; Hayashi Y; Kudo H
    Adv Exp Med Biol; 2018; 1080():119-154. PubMed ID: 30091094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Val117 and Arg372 as critical amino acid residues for the activity difference between human CYP2A6 and CYP2A13 in coumarin 7-hydroxylation.
    He XY; Shen J; Hu WY; Ding X; Lu AY; Hong JY
    Arch Biochem Biophys; 2004 Jul; 427(2):143-53. PubMed ID: 15196988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase.
    Gao Y; Zhang H; Fan M; Jia C; Shi L; Pan X; Cao P; Zhao X; Chang W; Li M
    Nat Commun; 2020 Mar; 11(1):1525. PubMed ID: 32251275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved production of fatty alcohols in cyanobacteria by metabolic engineering.
    Yao L; Qi F; Tan X; Lu X
    Biotechnol Biofuels; 2014; 7():94. PubMed ID: 25024742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering the substrate specificity of Alcaligenes D-aminoacylase useful for the production of D-amino acids by optical resolution.
    Yano S; Haruta H; Ikeda T; Kikuchi T; Murakami M; Moriguchi M; Wakayama M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3247-52. PubMed ID: 21546325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H; Hamza A; Zhan CG; Tai HH
    Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme.
    Lin F; Das D; Lin XN; Marsh EN
    FEBS J; 2013 Oct; 280(19):4773-81. PubMed ID: 23895371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The crystal structure of isoniazid-bound KatG catalase-peroxidase from Synechococcus elongatus PCC7942.
    Kamachi S; Hirabayashi K; Tamoi M; Shigeoka S; Tada T; Wada K
    FEBS J; 2015 Jan; 282(1):54-64. PubMed ID: 25303560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-Activated Electron Transfer and Turnover in Ru-Modified Aldehyde Deformylating Oxygenases.
    Bains RK; Miller JJ; van der Roest HK; Qu S; Lute B; Warren JJ
    Inorg Chem; 2018 Jul; 57(14):8211-8217. PubMed ID: 29939728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants.
    Tan X; Liang F; Cai K; Lu X
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6373-82. PubMed ID: 23512480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase.
    Kripli B; Csendes FV; Török P; Speier G; Kaizer J
    Chemistry; 2019 Nov; 25(63):14290-14294. PubMed ID: 31448834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate.
    Pandelia ME; Li N; Nørgaard H; Warui DM; Rajakovich LJ; Chang WC; Booker SJ; Krebs C; Bollinger JM
    J Am Chem Soc; 2013 Oct; 135(42):15801-12. PubMed ID: 23987523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving alkane synthesis in Escherichia coli via metabolic engineering.
    Song X; Yu H; Zhu K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.