BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28302177)

  • 41. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulatory genomic circuitry of human disease loci by integrative epigenomics.
    Boix CA; James BT; Park YP; Meuleman W; Kellis M
    Nature; 2021 Feb; 590(7845):300-307. PubMed ID: 33536621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of inflammation in diabetes: From genetics to epigenomics evidence.
    Diedisheim M; Carcarino E; Vandiedonck C; Roussel R; Gautier JF; Venteclef N
    Mol Metab; 2020 Nov; 41():101041. PubMed ID: 32603690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studying the epigenome using next generation sequencing.
    Ku CS; Naidoo N; Wu M; Soong R
    J Med Genet; 2011 Nov; 48(11):721-30. PubMed ID: 21825079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epigenome-wide Association Studies and the Interpretation of Disease -Omics.
    Birney E; Smith GD; Greally JM
    PLoS Genet; 2016 Jun; 12(6):e1006105. PubMed ID: 27336614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying deleterious effects of regulatory variants.
    Li S; Alvarez RV; Sharan R; Landsman D; Ovcharenko I
    Nucleic Acids Res; 2017 Mar; 45(5):2307-2317. PubMed ID: 27980060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals.
    Wesolowska-Andersen A; Zhuo Yu G; Nylander V; Abaitua F; Thurner M; Torres JM; Mahajan A; Gloyn AL; McCarthy MI
    Elife; 2020 Jan; 9():. PubMed ID: 31985400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrative analysis of 3604 GWAS reveals multiple novel cell type-specific regulatory associations.
    Breeze CE; Haugen E; Reynolds A; Teschendorff A; van Dongen J; Lan Q; Rothman N; Bourque G; Dunham I; Beck S; Stamatoyannopoulos J; Franceschini N; Berndt SI
    Genome Biol; 2022 Jan; 23(1):13. PubMed ID: 34996498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.
    Gu J; Stevens M; Xing X; Li D; Zhang B; Payton JE; Oltz EM; Jarvis JN; Jiang K; Cicero T; Costello JF; Wang T
    G3 (Bethesda); 2016 Apr; 6(4):973-86. PubMed ID: 26888867
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms.
    del Rosario RC; Poschmann J; Rouam SL; Png E; Khor CC; Hibberd ML; Prabhakar S
    Nat Methods; 2015 May; 12(5):458-64. PubMed ID: 25799442
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations.
    Teschendorff AE; Zheng SC
    Epigenomics; 2017 May; 9(5):757-768. PubMed ID: 28517979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci.
    Örd T; Õunap K; Stolze LK; Aherrahrou R; Nurminen V; Toropainen A; Selvarajan I; Lönnberg T; Aavik E; Ylä-Herttuala S; Civelek M; Romanoski CE; Kaikkonen MU
    Circ Res; 2021 Jul; 129(2):240-258. PubMed ID: 34024118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multitissue H3K27ac profiling of GTEx samples links epigenomic variation to disease.
    Hou L; Xiong X; Park Y; Boix C; James B; Sun N; He L; Patel A; Zhang Z; Molinie B; Van Wittenberghe N; Steelman S; Nusbaum C; Aguet F; Ardlie KG; Kellis M
    Nat Genet; 2023 Oct; 55(10):1665-1676. PubMed ID: 37770633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating genomic and epigenomic information: a promising strategy for identifying functional DNA variants of human disease.
    Zaina S; Lund G
    Clin Genet; 2012 Apr; 81(4):334-40. PubMed ID: 22292420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic sources of population epigenomic variation.
    Taudt A; Colomé-Tatché M; Johannes F
    Nat Rev Genet; 2016 Jun; 17(6):319-32. PubMed ID: 27156976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting effects of noncoding variants with deep learning-based sequence model.
    Zhou J; Troyanskaya OG
    Nat Methods; 2015 Oct; 12(10):931-4. PubMed ID: 26301843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants.
    Spisák S; Lawrenson K; Fu Y; Csabai I; Cottman RT; Seo JH; Haiman C; Han Y; Lenci R; Li Q; Tisza V; Szállási Z; Herbert ZT; Chabot M; Pomerantz M; Solymosi N; ; Gayther SA; Joung JK; Freedman ML
    Nat Med; 2015 Nov; 21(11):1357-63. PubMed ID: 26398868
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional evaluation of genetic variants associated with endometriosis near GREB1.
    Fung JN; Holdsworth-Carson SJ; Sapkota Y; Zhao ZZ; Jones L; Girling JE; Paiva P; Healey M; Nyholt DR; Rogers PA; Montgomery GW
    Hum Reprod; 2015 May; 30(5):1263-75. PubMed ID: 25788566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetics of human gene expression.
    Stranger BE; Raj T
    Curr Opin Genet Dev; 2013 Dec; 23(6):627-34. PubMed ID: 24238872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†.
    Kirsten H; Al-Hasani H; Holdt L; Gross A; Beutner F; Krohn K; Horn K; Ahnert P; Burkhardt R; Reiche K; Hackermüller J; Löffler M; Teupser D; Thiery J; Scholz M
    Hum Mol Genet; 2015 Aug; 24(16):4746-63. PubMed ID: 26019233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.