These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2830218)

  • 1. Glycolytic regulation during an aerobic rest-to-work transition in dog gracilis muscle.
    Connett RJ
    J Appl Physiol (1985); 1987 Dec; 63(6):2366-74. PubMed ID: 2830218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic pH during a rest-to-work transition in red muscle: application of enzyme equilibria.
    Connett RJ
    J Appl Physiol (1985); 1987 Dec; 63(6):2360-5. PubMed ID: 3436870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis.
    Connett RJ; Gayeski TE; Honig CR
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H922-9. PubMed ID: 4003569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation.
    Chesley A; Dyck DJ; Spriet LL
    J Appl Physiol (1985); 1994 Aug; 77(2):956-62. PubMed ID: 8002553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate.
    Oslund RC; Su X; Haugbro M; Kee JM; Esposito M; David Y; Wang B; Ge E; Perlman DH; Kang Y; Muir TW; Rabinowitz JD
    Nat Chem Biol; 2017 Oct; 13(10):1081-1087. PubMed ID: 28805803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate accumulation in fully aerobic, working, dog gracilis muscle.
    Connett RJ; Gayeski TE; Honig CR
    Am J Physiol; 1984 Jan; 246(1 Pt 2):H120-8. PubMed ID: 6696085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men.
    Spriet LL; Söderlund K; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Feb; 62(2):616-21. PubMed ID: 3558221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo glycolytic equilibria in dog gracilis muscle.
    Connett RJ
    J Biol Chem; 1985 Mar; 260(6):3314-20. PubMed ID: 3972826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal muscle.
    Dobson GP; Parkhouse WS; Hochachka PW
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R186-94. PubMed ID: 3605383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle power and metabolism in maximal intermittent exercise.
    McCartney N; Spriet LL; Heigenhauser GJ; Kowalchuk JM; Sutton JR; Jones NL
    J Appl Physiol (1985); 1986 Apr; 60(4):1164-9. PubMed ID: 3700299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle phosphoglycerate mutase deficiency.
    DiMauro S; Miranda AF; Olarte M; Friedman R; Hays AP
    Neurology; 1982 Jun; 32(6):584-91. PubMed ID: 6283419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leg citrate metabolism at rest and during exercise in relation to diet and substrate utilization in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1984 Oct; 122(2):145-53. PubMed ID: 6516871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity and duration of exercise effects on skeletal muscle cAMP, phosphorylase, and glycogen.
    Goldfarb AH; Bruno JF; Buckenmeyer PJ
    J Appl Physiol (1985); 1989 Jan; 66(1):190-4. PubMed ID: 2537282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus magnetic resonance spectroscopy of partially blocked muscle glycolysis. An in vivo study of phosphoglycerate mutase deficiency.
    Argov Z; Bank WJ; Boden B; Ro YI; Chance B
    Arch Neurol; 1987 Jun; 44(6):614-7. PubMed ID: 3034220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing lactic acid production in working skeletal muscle.
    Hirche H; Bovenkamp U; Busse J; Hombach B; Manthey J
    Scand J Clin Lab Invest Suppl; 1973; 128():11-5. PubMed ID: 4764569
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of glycolysis in skeletal muscle from fetal rhesus monkeys.
    Beatty CH; Young MK; Bocek RM
    Pediatr Res; 1976 Mar; 10(3):149-53. PubMed ID: 175343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of interactions in glycolytic enzymes.
    Hakobyan D; Nazaryan K
    Biochemistry (Mosc); 2006 Apr; 71(4):370-5. PubMed ID: 16615856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.