BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28302504)

  • 1. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.
    Long A; Klimova N; Kristian T
    Neurochem Int; 2017 Oct; 109():193-201. PubMed ID: 28302504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure.
    Formentini L; Macchiarulo A; Cipriani G; Camaioni E; Rapizzi E; Pellicciari R; Moroni F; Chiarugi A
    J Biol Chem; 2009 Jun; 284(26):17668-76. PubMed ID: 19411252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial PARP1 regulates NAD
    Lee JH; Hussain M; Kim EW; Cheng SJ; Leung AKL; Fakouri NB; Croteau DL; Bohr VA
    Exp Mol Med; 2022 Dec; 54(12):2135-2147. PubMed ID: 36473936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress.
    Ishikawa K; Ogawa T; Hirosue E; Nakayama Y; Harada K; Fukusaki E; Yoshimura K; Shigeoka S
    Plant Physiol; 2009 Oct; 151(2):741-54. PubMed ID: 19656905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the functional aspects of poly(ADP-ribose) polymerase-1 (PARP-1) in mitochondrial homeostasis in Dictyostelium discoideum.
    Kadam A; Jubin T; Roychowdhury R; Garg A; Parmar N; Palit SP; Begum R
    Biol Cell; 2020 Aug; 112(8):222-237. PubMed ID: 32324907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolase regulates NAD+ metabolites and modulates cellular redox.
    Tong L; Lee S; Denu JM
    J Biol Chem; 2009 Apr; 284(17):11256-66. PubMed ID: 19251690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities.
    Debar L; Ishak L; Moretton A; Anoosheh S; Morel F; Jenninger L; Garreau-Balandier I; Vernet P; Hofer A; van den Wildenberg S; Farge G
    Mitochondrion; 2023 Jul; 71():93-103. PubMed ID: 37343711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease.
    Atkins K; Dasgupta A; Chen KH; Mewburn J; Archer SL
    Clin Sci (Lond); 2016 Nov; 130(21):1861-74. PubMed ID: 27660309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse Nudt13 is a Mitochondrial Nudix Hydrolase with NAD(P)H Pyrophosphohydrolase Activity.
    Abdelraheim SR; Spiller DG; McLennan AG
    Protein J; 2017 Oct; 36(5):425-432. PubMed ID: 28755312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ADP-ribose reactive NUDIX hydrolase isoforms can modulate HIF-1α in cancer cells.
    Yoon B; Yang EG; Kim SY
    Biochem Biophys Res Commun; 2018 Sep; 504(1):321-327. PubMed ID: 30190133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals.
    Kulikova VA; Nikiforov AA
    Biochemistry (Mosc); 2020 Aug; 85(8):883-894. PubMed ID: 33045949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury.
    Owens K; Park JH; Schuh R; Kristian T
    Transl Stroke Res; 2013 Dec; 4(6):618-34. PubMed ID: 24323416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection.
    Kristian T; Balan I; Schuh R; Onken M
    J Neurosci Res; 2011 Dec; 89(12):1946-55. PubMed ID: 21488086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism.
    Klimova N; Kristian T
    Neurochem Res; 2019 Oct; 44(10):2280-2287. PubMed ID: 30661231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools.
    VanLinden MR; Niere M; Nikiforov AA; Ziegler M; Dölle C
    Methods Mol Biol; 2017; 1608():45-56. PubMed ID: 28695502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress.
    Toyama EQ; Herzig S; Courchet J; Lewis TL; Losón OC; Hellberg K; Young NP; Chen H; Polleux F; Chan DC; Shaw RJ
    Science; 2016 Jan; 351(6270):275-281. PubMed ID: 26816379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.