These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28302669)

  • 21. Estimation of hand forces and propelling efficiency during front crawl swimming with hand paddles.
    Gourgoulis V; Aggeloussis N; Vezos N; Kasimatis P; Antoniou P; Mavromatis G
    J Biomech; 2008; 41(1):208-15. PubMed ID: 17706655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Oct; 201(Pt 20):2867-77. PubMed ID: 9866875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
    Ngo V; McHenry MJ
    J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative jet wake structure and swimming performance of salps.
    Sutherland KR; Madin LP
    J Exp Biol; 2010 Sep; 213(Pt 17):2967-75. PubMed ID: 20709925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cool your jets: biological jet propulsion in marine invertebrates.
    Gemmell BJ; Dabiri JO; Colin SP; Costello JH; Townsend JP; Sutherland KR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34137893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
    Katija K; Colin SP; Costello JH; Jiang H
    J Exp Biol; 2015 Aug; 218(Pt 15):2333-43. PubMed ID: 26026040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Swimming mechanics and propulsive efficiency in the chambered nautilus.
    Neil TR; Askew GN
    R Soc Open Sci; 2018 Feb; 5(2):170467. PubMed ID: 29515819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Built for rowing: frog muscle is tuned to limb morphology to power swimming.
    Richards CT; Clemente CJ
    J R Soc Interface; 2013 Jul; 10(84):20130236. PubMed ID: 23676897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Sep; 201(Pt 20):2867-2877. PubMed ID: 9739069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation and analysis of diving beetle movements while swimming.
    Qi D; Zhang C; He J; Yue Y; Wang J; Xiao D
    Sci Rep; 2021 Aug; 11(1):16581. PubMed ID: 34400745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics.
    Peters SE; Kamel LT; Bashor DP
    J Morphol; 1996 Oct; 230(1):1-16. PubMed ID: 8843687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wake-based unsteady modeling of the aquatic beetle Dytiscus marginalis.
    Whittlesey RW
    J Theor Biol; 2011 Dec; 291():14-21. PubMed ID: 21920372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin.
    Kahn JC; Peretz DJ; Tangorra JL
    Bioinspir Biomim; 2015 May; 10(3):036009. PubMed ID: 25985056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle function and hydrodynamics limit power and speed in swimming frogs.
    Clemente CJ; Richards C
    Nat Commun; 2013; 4():2737. PubMed ID: 24177194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drag-based 'hovering' in ducks: the hydrodynamics and energetic cost of bottom feeding.
    Ribak G; Swallow JG; Jones DR
    PLoS One; 2010 Sep; 5(9):e12565. PubMed ID: 20830286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
    Lecrivain G; Payton C; Slaouti A; Kennedy I
    J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle.
    Moslemi AA; Krueger PS
    Bioinspir Biomim; 2010 Sep; 5(3):036003. PubMed ID: 20710067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.