These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28302728)
1. High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions. Azouaoui H; Montigny C; Dieudonné T; Champeil P; Jacquot A; Vázquez-Ibar JL; Le Maréchal P; Ulstrup J; Ash MR; Lyons JA; Nissen P; Lenoir G J Biol Chem; 2017 May; 292(19):7954-7970. PubMed ID: 28302728 [TBL] [Abstract][Full Text] [Related]
2. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. Azouaoui H; Montigny C; Ash MR; Fijalkowski F; Jacquot A; Grønberg C; López-Marqués RL; Palmgren MG; Garrigos M; le Maire M; Decottignies P; Gourdon P; Nissen P; Champeil P; Lenoir G PLoS One; 2014; 9(11):e112176. PubMed ID: 25393116 [TBL] [Abstract][Full Text] [Related]
3. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail. Zhou X; Sebastian TT; Graham TR J Biol Chem; 2013 Nov; 288(44):31807-15. PubMed ID: 24045945 [TBL] [Abstract][Full Text] [Related]
4. Structure and autoregulation of a P4-ATPase lipid flippase. Timcenko M; Lyons JA; Januliene D; Ulstrup JJ; Dieudonné T; Montigny C; Ash MR; Karlsen JL; Boesen T; Kühlbrandt W; Lenoir G; Moeller A; Nissen P Nature; 2019 Jul; 571(7765):366-370. PubMed ID: 31243363 [TBL] [Abstract][Full Text] [Related]
5. Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p. Bai L; Kovach A; You Q; Hsu HC; Zhao G; Li H Nat Commun; 2019 Sep; 10(1):4142. PubMed ID: 31515475 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Zhou X; Graham TR Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16586-91. PubMed ID: 19805341 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate. Jacquot A; Montigny C; Hennrich H; Barry R; le Maire M; Jaxel C; Holthuis J; Champeil P; Lenoir G J Biol Chem; 2012 Apr; 287(16):13249-61. PubMed ID: 22351780 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p phospholipid flippase. Takahashi Y; Fujimura-Kamada K; Kondo S; Tanaka K J Biochem; 2011 Apr; 149(4):423-32. PubMed ID: 21212072 [TBL] [Abstract][Full Text] [Related]
9. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Saito K; Fujimura-Kamada K; Furuta N; Kato U; Umeda M; Tanaka K Mol Biol Cell; 2004 Jul; 15(7):3418-32. PubMed ID: 15090616 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the phospholipid flippase Drs2p with the F-box protein Rcy1p plays an important role in early endosome to trans-Golgi network vesicle transport in yeast. Hanamatsu H; Fujimura-Kamada K; Yamamoto T; Furuta N; Tanaka K J Biochem; 2014 Jan; 155(1):51-62. PubMed ID: 24272750 [TBL] [Abstract][Full Text] [Related]
11. Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex. Azouaoui H; Montigny C; Jacquot A; Barry R; Champeil P; Lenoir G Methods Mol Biol; 2016; 1377():37-55. PubMed ID: 26695021 [TBL] [Abstract][Full Text] [Related]
12. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Chen S; Wang J; Muthusamy BP; Liu K; Zare S; Andersen RJ; Graham TR Traffic; 2006 Nov; 7(11):1503-17. PubMed ID: 16956384 [TBL] [Abstract][Full Text] [Related]
13. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Natarajan P; Liu K; Patil DV; Sciorra VA; Jackson CL; Graham TR Nat Cell Biol; 2009 Dec; 11(12):1421-6. PubMed ID: 19898464 [TBL] [Abstract][Full Text] [Related]
14. Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase. Timcenko M; Dieudonné T; Montigny C; Boesen T; Lyons JA; Lenoir G; Nissen P J Mol Biol; 2021 Aug; 433(16):167062. PubMed ID: 34023399 [TBL] [Abstract][Full Text] [Related]
15. Direct evidence of lipid transport by the Drs2-Cdc50 flippase upon truncation of its terminal regions. Herrera SA; Justesen BH; Dieudonné T; Montigny C; Nissen P; Lenoir G; Günther Pomorski T Protein Sci; 2023 Dec; 33(3):e4855. PubMed ID: 38063271 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. Hsu JW; Chen ZJ; Liu YW; Lee FJ J Cell Sci; 2014 Jun; 127(Pt 12):2615-20. PubMed ID: 24706946 [TBL] [Abstract][Full Text] [Related]
17. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Natarajan P; Wang J; Hua Z; Graham TR Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10614-9. PubMed ID: 15249668 [TBL] [Abstract][Full Text] [Related]
18. Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. Lenoir G; Williamson P; Puts CF; Holthuis JC J Biol Chem; 2009 Jul; 284(27):17956-67. PubMed ID: 19411703 [TBL] [Abstract][Full Text] [Related]
19. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Tsai PC; Hsu JW; Liu YW; Chen KY; Lee FJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E668-77. PubMed ID: 23345439 [TBL] [Abstract][Full Text] [Related]
20. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Liu K; Surendhran K; Nothwehr SF; Graham TR Mol Biol Cell; 2008 Aug; 19(8):3526-35. PubMed ID: 18508916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]