BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28302911)

  • 1. Real-time insights into regulated exocytosis.
    Tran DT; Ten Hagen KG
    J Cell Sci; 2017 Apr; 130(8):1355-1363. PubMed ID: 28302911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo.
    Tran DT; Masedunskas A; Weigert R; Ten Hagen KG
    Nat Commun; 2015 Dec; 6():10098. PubMed ID: 26639106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.
    Rousso T; Schejter ED; Shilo BZ
    Nat Cell Biol; 2016 Feb; 18(2):181-90. PubMed ID: 26641716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swip-1 promotes exocytosis of glue granules in the exocrine Drosophila salivary gland.
    Lehne F; Bogdan S
    J Cell Sci; 2023 Mar; 136(6):. PubMed ID: 36727484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mistargeting of secretory cargo in retromer-deficient cells.
    Neuman SD; Terry EL; Selegue JE; Cavanagh AT; Bashirullah A
    Dis Model Mech; 2021 Jan; 14(1):. PubMed ID: 33380435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin puts the squeeze on Drosophila glue secretion.
    Merrifield CJ
    Nat Cell Biol; 2016 Feb; 18(2):142-4. PubMed ID: 26820438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals.
    Milberg O; Shitara A; Ebrahim S; Masedunskas A; Tora M; Tran DT; Chen Y; Conti MA; Adelstein RS; Ten Hagen KG; Weigert R
    J Cell Biol; 2017 Jul; 216(7):1925-1936. PubMed ID: 28600434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exocytosis by vesicle crumpling maintains apical membrane homeostasis during exocrine secretion.
    Kamalesh K; Scher N; Biton T; Schejter ED; Shilo BZ; Avinoam O
    Dev Cell; 2021 Jun; 56(11):1603-1616.e6. PubMed ID: 34102104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravital microscopy for imaging subcellular structures in live mice expressing fluorescent proteins.
    Masedunskas A; Porat-Shliom N; Tora M; Milberg O; Weigert R
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24022089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of the actin cytoskeleton during regulated exocytosis by intravital microscopy.
    Milberg O; Tora M; Shitara A; Takuma T; Masedunskas A; Weigert R
    Methods Mol Biol; 2014; 1174():407-21. PubMed ID: 24947398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of myosin 1c and myosin 1b in surfactant exocytosis.
    Kittelberger N; Breunig M; Martin R; Knölker HJ; Miklavc P
    J Cell Sci; 2016 Apr; 129(8):1685-96. PubMed ID: 26940917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis.
    Biton T; Scher N; Carmon S; Elbaz-Alon Y; Schejter ED; Shilo BZ; Avinoam O
    J Cell Biol; 2023 Nov; 222(11):. PubMed ID: 37707500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells.
    Elias S; Delestre C; Ory S; Marais S; Courel M; Vazquez-Martinez R; Bernard S; Coquet L; Malagon MM; Driouich A; Chan P; Gasman S; Anouar Y; Montero-Hadjadje M
    Endocrinology; 2012 Sep; 153(9):4444-56. PubMed ID: 22851679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion.
    Tanguy E; Carmon O; Wang Q; Jeandel L; Chasserot-Golaz S; Montero-Hadjadje M; Vitale N
    J Neurochem; 2016 Jun; 137(6):904-12. PubMed ID: 26877188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 4D view on insulin secretory granule turnover in the β-cell.
    Müller A; Mziaut H; Neukam M; Knoch KP; Solimena M
    Diabetes Obes Metab; 2017 Sep; 19 Suppl 1():107-114. PubMed ID: 28880479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin coating and compression of fused secretory vesicles are essential for surfactant secretion--a role for Rho, formins and myosin II.
    Miklavc P; Hecht E; Hobi N; Wittekindt OH; Dietl P; Kranz C; Frick M
    J Cell Sci; 2012 Jun; 125(Pt 11):2765-74. PubMed ID: 22427691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging membrane remodeling during regulated exocytosis in live mice.
    Shitara A; Weigert R
    Exp Cell Res; 2015 Oct; 337(2):219-25. PubMed ID: 26160452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells.
    Yuan T; Lu J; Zhang J; Zhang Y; Chen L
    Biophys J; 2015 Jan; 108(2):251-60. PubMed ID: 25606674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells.
    Gutiérrez LM
    Int Rev Cell Mol Biol; 2012; 295():109-37. PubMed ID: 22449488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of dynamic F-actin changes during exocytosis.
    Thorn P
    Methods Mol Biol; 2014; 1174():423-31. PubMed ID: 24947399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.