BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28303005)

  • 1. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.
    Moen SO; Edwards TE; Dranow DM; Clifton MC; Sankaran B; Van Voorhis WC; Sharma A; Manoil C; Staker BL; Myler PJ; Lorimer DD
    Sci Rep; 2017 Mar; 7(1):223. PubMed ID: 28303005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases.
    Banik SD; Nandi N
    J Biomol Struct Dyn; 2012; 30(6):701-15. PubMed ID: 22731388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.
    Dewan V; Reader J; Forsyth KM
    Top Curr Chem; 2014; 344():293-329. PubMed ID: 23666077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site.
    Yanagisawa T; Sumida T; Ishii R; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):5-15. PubMed ID: 23275158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
    Mocibob M; Ivic N; Bilokapic S; Maier T; Luic M; Ban N; Weygand-Durasevic I
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14585-90. PubMed ID: 20663952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes.
    Nachiappan M; Jain V; Sharma A; Yogavel M; Jeyakanthan J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1379-1386. PubMed ID: 30248426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.
    Dutta S; Choudhury K; Banik SD; Nandi N
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2280-98. PubMed ID: 24745224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase.
    Yaremchuk A; Tukalo M; Grøtli M; Cusack S
    J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis.
    Ravishankar S; Ambady A; Swetha RG; Anbarasu A; Ramaiah S; Sambandamurthy VK
    PLoS One; 2016; 11(1):e0147188. PubMed ID: 26794499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between Catalysts and Substrates for Activity of Class Ib Aminoacyl-tRNA Synthetases and Implications for Pharmacology.
    Stephen P; Lin SX; Giege R
    Curr Top Med Chem; 2016; 16(6):616-33. PubMed ID: 26286212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum.
    Sharma VK; Chhibber-Goel J; Yogavel M; Sharma A
    Mol Biochem Parasitol; 2023 Feb; 253():111530. PubMed ID: 36370911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery.
    Pang L; Weeks SD; Van Aerschot A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-based multiple sequence alignment of all class I aminoacyl-tRNA synthetases.
    Landès C; Perona JJ; Brunie S; Rould MA; Zelwer C; Steitz TA; Risler JL
    Biochimie; 1995; 77(3):194-203. PubMed ID: 7647112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases.
    Perona JJ; Gruic-Sovulj I
    Top Curr Chem; 2014; 344():1-41. PubMed ID: 23852030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
    Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM
    J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of tRNAs by aminoacyl-tRNA synthetases.
    Cavarelli J; Moras D
    FASEB J; 1993 Jan; 7(1):79-86. PubMed ID: 8422978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacyl-tRNA Synthetases in the Bacterial World.
    Giegé R; Springer M
    EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic potential of aminoacyl-tRNA synthetase navigates tRNA on its pathway to the binding site.
    Tworowski D; Feldman AV; Safro MG
    J Mol Biol; 2005 Jul; 350(5):866-82. PubMed ID: 15964014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.