These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28303250)

  • 1. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique.
    Tang H; Yang Y; Zhang C; Chen R; Huang P; Duan C; Zou P
    Biomed Res Int; 2017; 2017():3267325. PubMed ID: 28303250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity.
    Yang L; Li Q
    Toxicol In Vitro; 2009 Mar; 23(2):346-8. PubMed ID: 19138734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features.
    Mei J; Zhao J
    J Theor Biol; 2018 Jun; 447():147-153. PubMed ID: 29596863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction.
    Zhu W; Guo Y; Zou Q
    Math Biosci Eng; 2021 Jun; 18(5):5943-5958. PubMed ID: 34517517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pippin: A random forest-based method for identifying presynaptic and postsynaptic neurotoxins.
    Li P; Zhang H; Zhao X; Jia C; Li F; Song J
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050008. PubMed ID: 32372714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilize a few features to classify presynaptic and postsynaptic neurotoxins.
    Wan H; Liu Q; Ju Y
    Comput Biol Med; 2023 Jan; 152():106380. PubMed ID: 36473343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of neurotoxins based on their function and source.
    Saha S; Raghava GP
    In Silico Biol; 2007; 7(4-5):369-87. PubMed ID: 18391230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou's pseudo components.
    Huo H; Li T; Wang S; Lv Y; Zuo Y; Yang L
    Sci Rep; 2017 Jul; 7(1):5827. PubMed ID: 28724993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of neurotoxins by support vector machine based on multiple feature vectors.
    Guang XM; Guo YZ; Wang X; Li ML
    Interdiscip Sci; 2010 Sep; 2(3):241-6. PubMed ID: 20658336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition.
    Lin H; Ding H
    J Theor Biol; 2011 Jan; 269(1):64-9. PubMed ID: 20969879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the heterotrimeric presynaptic phospholipase A(2) neurotoxin complex from the venom of the common death adder (Acanthophis antarcticus).
    Blacklow B; Escoubas P; Nicholson GM
    Biochem Pharmacol; 2010 Jul; 80(2):277-87. PubMed ID: 20361942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes.
    Fogolari F; Tosatto SC; Muraro L; Montecucco C
    FEBS Lett; 2009 Jul; 583(14):2321-5. PubMed ID: 19576894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2016 Feb; 17(2):218. PubMed ID: 26861308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition.
    Zhu PP; Li WC; Zhong ZJ; Deng EZ; Ding H; Chen W; Lin H
    Mol Biosyst; 2015 Feb; 11(2):558-63. PubMed ID: 25437899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterisation of P-EPTX-Ap1a and P-EPTX-Ar1a: pre-synaptic neurotoxins from the venom of the northern (Acanthophis praelongus) and Irian Jayan (Acanthophis rugosus) death adders.
    Chaisakul J; Konstantakopoulos N; Smith AI; Hodgson WC
    Biochem Pharmacol; 2010 Sep; 80(6):895-902. PubMed ID: 20488165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins.
    Montecucco C; Rossetto O; Caccin P; Rigoni M; Carli L; Morbiato L; Muraro L; Paoli M
    Toxicon; 2009 Oct; 54(5):561-4. PubMed ID: 19111566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting bacteriophage proteins located in host cell with feature selection technique.
    Ding H; Liang ZY; Guo FB; Huang J; Chen W; Lin H
    Comput Biol Med; 2016 Apr; 71():156-61. PubMed ID: 26945463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the 'Brown snake paradox': in vitro characterisation of Australasian snake presynaptic neurotoxin activity.
    Barber CM; Isbister GK; Hodgson WC
    Toxicol Lett; 2012 May; 210(3):318-23. PubMed ID: 22343038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC.
    Han GS; Yu ZG; Anh V
    J Theor Biol; 2014 Mar; 344():31-9. PubMed ID: 24316387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis.
    Ding H; Feng PM; Chen W; Lin H
    Mol Biosyst; 2014 Aug; 10(8):2229-35. PubMed ID: 24931825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.