These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28303387)
1. Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca Park SW; Shin KC; Park HJ; Yoou SK; Park JY; Kang YS; Sung DJ; Kim JG; Park SH; Kim B; Cho H; Bae YM Pflugers Arch; 2017 Jun; 469(5-6):829-842. PubMed ID: 28303387 [TBL] [Abstract][Full Text] [Related]
2. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. Adebiyi A; Narayanan D; Jaggar JH J Biol Chem; 2011 Feb; 286(6):4341-8. PubMed ID: 21098487 [TBL] [Abstract][Full Text] [Related]
3. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats. Jiao HX; Mu YP; Gui LX; Yan FR; Lin DC; Sham JS; Lin MJ Vascul Pharmacol; 2016 Sep; 84():55-66. PubMed ID: 27311393 [TBL] [Abstract][Full Text] [Related]
4. Caveolae act as membrane reserves which limit mechanosensitive I(Cl,swell) channel activation during swelling in the rat ventricular myocyte. Kozera L; White E; Calaghan S PLoS One; 2009 Dec; 4(12):e8312. PubMed ID: 20011535 [TBL] [Abstract][Full Text] [Related]
5. Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. Shmygol A; Noble K; Wray S J Physiol; 2007 Jun; 581(Pt 2):445-56. PubMed ID: 17331986 [TBL] [Abstract][Full Text] [Related]
6. Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Ducret T; El Arrouchi J; Courtois A; Quignard JF; Marthan R; Savineau JP Cell Calcium; 2010 Nov; 48(5):251-9. PubMed ID: 21035852 [TBL] [Abstract][Full Text] [Related]
7. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. Kawamura S; Miyamoto S; Brown JH J Biol Chem; 2003 Aug; 278(33):31111-7. PubMed ID: 12777392 [TBL] [Abstract][Full Text] [Related]
8. Caveolae are involved in mechanotransduction during pulmonary hypertension. Gilbert G; Ducret T; Savineau JP; Marthan R; Quignard JF Am J Physiol Lung Cell Mol Physiol; 2016 Jun; 310(11):L1078-87. PubMed ID: 27016585 [TBL] [Abstract][Full Text] [Related]
9. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Sedding DG; Hermsen J; Seay U; Eickelberg O; Kummer W; Schwencke C; Strasser RH; Tillmanns H; Braun-Dullaeus RC Circ Res; 2005 Apr; 96(6):635-42. PubMed ID: 15731459 [TBL] [Abstract][Full Text] [Related]
10. Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. Patel HH; Zhang S; Murray F; Suda RY; Head BP; Yokoyama U; Swaney JS; Niesman IR; Schermuly RT; Pullamsetti SS; Thistlethwaite PA; Miyanohara A; Farquhar MG; Yuan JX; Insel PA FASEB J; 2007 Sep; 21(11):2970-9. PubMed ID: 17470567 [TBL] [Abstract][Full Text] [Related]
11. Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. Hayabuchi Y; Nakaya Y; Mawatari K; Inoue M; Sakata M; Kagami S Heart Vessels; 2011 Jan; 26(1):91-100. PubMed ID: 21063882 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide constricts rat arteries by activating Na Park HJ; Shin KC; Yoou SK; Kang M; Kim JG; Sung DJ; Yu W; Lee Y; Kim SH; Bae YM; Park SW Free Radic Res; 2019 Jan; 53(1):94-103. PubMed ID: 30526150 [TBL] [Abstract][Full Text] [Related]
13. Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Kawabe J; Okumura S; Lee MC; Sadoshima J; Ishikawa Y Am J Physiol Heart Circ Physiol; 2004 May; 286(5):H1845-52. PubMed ID: 15072971 [TBL] [Abstract][Full Text] [Related]
14. Differential targeting and signalling of voltage-gated T-type Ca Fan G; Kaßmann M; Hashad AM; Welsh DG; Gollasch M J Physiol; 2018 Oct; 596(20):4863-4877. PubMed ID: 30146760 [TBL] [Abstract][Full Text] [Related]
15. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Baker N; Sohn J; Tuan RS Stem Cell Res Ther; 2015 Dec; 6():238. PubMed ID: 26626726 [TBL] [Abstract][Full Text] [Related]
17. Specific inhibition of stretch-induced increase in L-type calcium channel currents by herbimycin A in canine basilar arterial myocytes. Kimura M; Obara K; Sasase T; Ishikawa T; Tanabe Y; Nakayama K Br J Pharmacol; 2000 Jun; 130(4):923-31. PubMed ID: 10864901 [TBL] [Abstract][Full Text] [Related]
18. A molecular complex of Ca Suzuki Y; Ozawa T; Kurata T; Nakajima N; Zamponi GW; Giles WR; Imaizumi Y; Yamamura H Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2117435119. PubMed ID: 35412911 [TBL] [Abstract][Full Text] [Related]
19. Increased Rho activation and PKC-mediated smooth muscle contractility in the absence of caveolin-1. Shakirova Y; Bonnevier J; Albinsson S; Adner M; Rippe B; Broman J; Arner A; Swärd K Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1326-35. PubMed ID: 17102036 [TBL] [Abstract][Full Text] [Related]
20. Effects of methyl beta-cyclodextrin on EDHF responses in pig and rat arteries; association between SK(Ca) channels and caveolin-rich domains. Absi M; Burnham MP; Weston AH; Harno E; Rogers M; Edwards G Br J Pharmacol; 2007 Jun; 151(3):332-40. PubMed ID: 17450174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]