BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28303391)

  • 1. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.
    Li YH; Zhang HN; Wu QS; Muday GK
    Planta; 2017 Jun; 245(6):1193-1213. PubMed ID: 28303391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.
    Li YH; Zou MH; Feng BH; Huang X; Zhang Z; Sun GM
    Plant Physiol Biochem; 2012 Jun; 55():33-42. PubMed ID: 22522578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin efflux carriers, MiPINs, are involved in adventitious root formation of mango cotyledon segments.
    Li YH; Mo YW; Wang SB; Zhang Z
    Plant Physiol Biochem; 2020 May; 150():15-26. PubMed ID: 32105796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Identification of an auxin response factor-like protein cDNA from mango cotyledon section].
    Xiao JN; Huang XL; Huang X; Li XJ
    Sheng Wu Gong Cheng Xue Bao; 2004 Jan; 20(1):59-62. PubMed ID: 16108491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cloning of cDNA fragments related to adventitious root formation from mango cotyledon section].
    Xiao JN; Huang XL; Zhang YS; Li Y; Li XJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Apr; 30(2):136-40. PubMed ID: 15599037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.
    Li SW; Shi RF; Leng Y
    PLoS One; 2015; 10(7):e0132969. PubMed ID: 26177103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative RNA sequencing based transcriptome profiling of regular bearing and alternate bearing mango (Mangifera indica L.) varieties reveals novel insights into the regulatory mechanisms underlying alternate bearing.
    Sharma N; Singh AK; Singh SK; Mahato AK; Srivastav M; Singh NK
    Biotechnol Lett; 2020 Jun; 42(6):1035-1050. PubMed ID: 32193655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides.
    Hong K; Gong D; Zhang L; Hu H; Jia Z; Gu H; Song K
    Gene; 2016 Jan; 576(1 Pt 2):275-83. PubMed ID: 26496007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation.
    Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S
    Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings.
    Li SW; Shi RF; Leng Y; Zhou Y
    BMC Genomics; 2016 Jan; 17():43. PubMed ID: 26755210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.
    Quan J; Meng S; Guo E; Zhang S; Zhao Z; Yang X
    BMC Genomics; 2017 Feb; 18(1):179. PubMed ID: 28209181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.
    Wu B; Li YH; Wu JY; Chen QZ; Huang X; Chen YF; Huang XL
    Mol Biol Rep; 2011 Jun; 38(5):3189-94. PubMed ID: 20182802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.
    Li SW; Leng Y; Shi RF
    BMC Genomics; 2017 Feb; 18(1):188. PubMed ID: 28212614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome analysis provides insights into formation of in vitro adventitious root from leaf explants of Arnebia euchroma.
    Devi J; Kaur E; Swarnkar MK; Acharya V; Bhushan S
    BMC Plant Biol; 2021 Sep; 21(1):414. PubMed ID: 34503445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).
    Wei K; Wang LY; Wu LY; Zhang CC; Li HL; Tan LQ; Cao HL; Cheng H
    PLoS One; 2014; 9(9):e107201. PubMed ID: 25216187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.
    Wu HX; Jia HM; Ma XW; Wang SB; Yao QS; Xu WT; Zhou YG; Gao ZS; Zhan RL
    J Proteomics; 2014 Jun; 105():19-30. PubMed ID: 24704857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.).
    An H; Zhang J; Xu F; Jiang S; Zhang X
    BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.).
    Stevens ME; Woeste KE; Pijut PM
    Tree Physiol; 2018 Jun; 38(6):877-894. PubMed ID: 29378021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.
    Azim MK; Khan IA; Zhang Y
    Plant Mol Biol; 2014 May; 85(1-2):193-208. PubMed ID: 24515595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.